

VISTA Clinical Application Architecture

VHA OFFICE OF INFORMATION (OI)
TECHNICAL SERVICES
VISTA CLINICAL APPLICATION ARCHITECTURE

Client Interface Migration Strategy

Fiscal Year 2001-2002 Plan

July 2000
Comments to: TSTechnInteg@med.va.gov
A C K N O W L E D G M E N T S
Many individuals contributed comments on the Clinical Application Architecture, including subject matter experts, reviewers, and focus group participants who identified the key areas for the Clinical Application Architecture to focus on.

The OpenVISTA team gratefully acknowledges the following VA staff that contributed their time, skills and effort to this document:

	Organization
	Contributor

	Northampton Community Care Center (VISN 1)
	Michael Marley

	Northern Florida/South Georgia Healthcare System (VISN 8)
	Dr. Maria Schay, Ph.D. (CIO), Dennis Bates

	OI BEST, VHA Architects
	Jim Demetriades, Dr. J. Ben Davoren, M.D., Steve Wagner

	OI Customer Services, National VISTA Support
	John Beaufait, Robert Danders, Neil Piper

	OI Technical Services (TS)
	Dan Bishop (ACIO), Doug Babcock (Deputy ACIO), Darrell Heinrichs

	OI TS, Clinician Desktop Service
	Tana Defa (Director), Marcia Insley, Kevin Meldrum, Jeremy Merrill, Rich Vertigan

	OI TS, Clinical Specialties Service
	Julius Chou (Director), Deven Atkinson, Bob Lushene, Randy Morton

	OI TS, Clinical Ancillary Service
	Marylin Hodge (Director), Bill Malcom, Jesse Staab

	OI TS, Electronic Medical Record Service
	Roy Baker (Director), Scott Thompson, Randy Morton, Mike Mims

	OI TS, Patient Management Systems Service
	Geoffrey Smullen

	OI TS, VISTA Data Systems and Integration Service
	Catherine Pfeil, Ph. D. (Director), Leigh Hurst, Kornel Krechoweckyj, John Kupecki, Nancy de Villers

	OI TS, Information Infrastructure Service
	Larry Weldon (Director), Thomas Blom, Ken Bowers, Kyle Clarke Don Creaven, Wally Fort, Maureen Hoye, Joel Ivey, Danila Manapsal

	OI TS, Program Development Service
	Mike Kilmade, Alan Skinner

	Richard L. Roudebush VAMC (VISN 10)
	Randy Cox, Director, Center for Applied Informatics Research and Operations (CAIRO)

	Puget Sound Health Care System (VISN 20)
	Dr. Thomas Payne, M.D.

	San Francisco VAMC (VISN 21)
	Ann Chu, Don Donati

	VA Desert Pacific Healthcare Network (VISN 22)
	Gary Twedt (VISN CIO; Chair, Architecture Planning Workgroup – VISN CIO Council)

	VA New England Healthcare System (VISN 1)
	Dr. Clayton Curtis, M.D.

C O N T E N T S
Acknowledgments
i

Executive Summary
1

31.
Introduction

31.1
Business Case

31.2
Purpose

41.3
Intended Audience

41.4
Why Now?

51.5
Scope

61.6
Scope in VHA IT Reference Architecture Model

61.7
Who Is Affected

71.8
Document Organization

71.9
Related Strategy Documents

81.10
Definitions/Terminology

102.
Critical Issues for VISTA GUI Clinical Applications

112.1
High TCO of VISTA Client Applications

132.2
Clinician Workflow

152.3
Synchronizing Multiple Applications

182.4
Composite Applications in a GUI Environment

202.5
Extensibility

222.6
Client Services Gap

242.7
Stalled Web Strategy

272.8
VISN Data Center Consolidation

283.
Vision

283.1
The Web is the Future Client Environment

303.2
Maturing Windows GUI Application Model and Migration

323.3
Presentation Layer Criteria for Web and GUI Front Ends

343.4
Clinical Application Architecture Components

373.5
Guiding Principles

414.
VISTA 2001 Clinical Application Architecture

444.1
Standards and Conventions

484.2
Business Application Layer

534.3
Web Services

564.4
GUI Composite Application Framework

614.5
Web Composite Application Framework

654.6
Context Management

704.7
Kernel Components

734.8
VISTA Web Portal

764.9
Server Connection

794.10
Online Help

824.11
Installation Services

865.
Risk Mitigation

865.1
Run-Time Risks in a Composite Application Architecture

875.2
Impact of Local Customization on VISTA Support

875.3
Server Performance

885.4
CCOW Industry Adoption Rate

895.5
CCOW Procurement and Vendor Dependence Issues

905.6
Reconciling ESSO and CCOW

915.7
IntelliMirror and SMS Deployment Dependency

925.8
Impact of Web Applications on Facility Networks

925.9
Conflicts with Other High Priority Projects

925.10
Impact of Technology Changes on OI Staff

946.
2001+ R&D Horizons

946.1
HL7 Version 3 and Patient Record Architecture (PRA)

956.2
Report Services: XML/XSL/Browser Combination

976.3
SOAP Protocol

986.4
PKI-Based Digital Signatures and Authentication

A.
Tactical View
A-1

B.
References
B-1

E X E C U T I V E S U M M A R Y
The Clinical Application Architecture is the first comprehensive attempt to synthesize the experience of VISTA GUI clinical application developers to date. It combines that experience with VHA's Information Technology Architecture (ITA) and emerging trends in healthcare information systems to define a blueprint for the infrastructure needed to support clinical development.

It focuses on the client portion of VISTA's clinical applications, in particular the presentation layer — the logical code layer which "...defines what, when, where and how information is captured from or presented to the user."
 The Clinical Application Architecture proposes an infrastructure for this layer that will more readily support adaptability and flexibility in the creation and deployment of VISTA clinical applications.

Composite applications like CPRS will be re-architected to allow parallel clinical development efforts to be distributed across many teams, both within OI and at the VISN level. In this fashion, VHA will be able to respond to user needs more quickly, while incorporating an even wider variety of development efforts and ideas.

Desktop clinical applications will be supported with more robust infrastructure, will be more easily deployable and better integrated. COTS desktop clinical applications will be easier to integrate with VISTA. Components for VISTA clinical applications will be more easily developed and deployed, both nationally and locally, which will help the Office of Information (OI) more rapidly meet VHA's changing business needs.

And, most importantly, this architecture acknowledges that the Web is the future client environment for VHA, and for most enterprises. The potential benefits of Web technology — including ease of deployment, lower TCO, familiar user interface, greater extensibility, remote user support, support by mainstream tools and products, and support for non-traditional computing devices — are too compelling for VHA to ignore or avoid.

The key challenge, with regards to the client portion of VISTA's clinical applications, in the months and years ahead will be managing their transition from character-based and GUI interfaces to Web-based interfaces. VHA will build its Web expertise and infrastructure gradually, transitioning its use of Web technology to mission-critical applications as the technology proves itself.
In particular, because of the wealth of potential advantages offered by the Web, VHA will:

· Begin piloting non-mission-critical Web-based applications.

· Begin designing and building out infrastructure with knowledge that the browser-based Web interfaces will, in some measure, supercede Windows GUI applications as the dominant VHA client application interface.

· Move all significant business logic currently in GUI client applications to a server-based business application layer.

· Begin to decompose large GUI clinical applications (e.g., CPRS) into modular, constituent components. This decomposition of large applications into atomic components will also prepare those same applications for re-implementation as modular, component-sized Web-based interfaces.

Re-architecting an existing set of applications is not without risk. The value brought to the table by the current versions of CPRS and other VISTA GUI clinical applications will be analyzed and thoroughly understood, to ensure that their value is not lost when the architecture is changed. Some components of the architecture require funding and resource investments to be implemented. Some components of the architecture may place additional workload on VISTA's servers. A section on risk mitigation provides an analysis of these risks and their possible mitigation.

OI managers will use the Clinical Application Architecture as the blueprint from which to define the individual projects needed to implement this architecture. The goal is to construct a more open, standards-based client application environment for the next generation of VISTA's clinical applications.
S E C T I O N
1. Introduction

1.1 Business Case

The overriding purpose of VISTA itself is to help VHA meet its business needs, most prominently that of providing healthcare. As VHA's business needs change, VISTA must be able to flexibly adapt and change as well. For precisely this reason, the Clinical Application Architecture defines an architecture that is more flexible and adaptable than the current VISTA client architecture.

Outcomes of defining and implementing the Clinical Application Architecture will include:

 Greater responsiveness in delivery of clinical services to the veteran

 Increased availability of patient information

 Cost avoidance through well defined technical directions and implementation of a stable long term strategy

 Greater flexibility in system replacement, planning and prioritization through the use of component systems

 Improved decision processes for technology investments

 Faster delivery of necessary new components

 Smoother integration and interoperability of separately-developed systems

 Standardization of platforms and protocols to facilitate integration of clinical data with external institutions and providers

 Better guidelines for the use of vendors, to design and deliver new products and services for VHA

1.2 Purpose

The VISTA Clinical Application Architecture defines a blueprint for constructing an open, standards-based environment for the development and management of the client portions of VISTA clinical applications. It identifies a set of services, tools, techniques and standards to support modular client application development, for both GUI and Web-based VISTA clinical front ends.

OI project managers, in Technical Services, Customer Services, BEST and Implementation and Training Services, will use this blueprint as a guide to:

· Build and deploy the new infrastructure described in the Clinical Application Architecture

· Design clinical applications that take advantage of the new infrastructure being developed

· Implement and support client clinical applications in the new client environment

The construction of a more open VISTA client environment will allow VHA to develop and manage clinical applications as discrete modules of functionality, independent of development team, team location, and development timeline. This will allow more rapid, parallel development of clinical functionality. The respective client applications will be able to be distributed separately, and yet come together to act as an integrated whole at the clinical point-of-use.

1.3 Intended Audience

This document is aimed at those people who are involved in the design, development, funding, deployment and maintenance of VISTA's clinical applications. It is intended for both OI and VISN use in decision making for clinical development efforts.

Certain sections of this document may also be of interest to clinicians who are using VISTA software products in the course of their practice.

1.4 Why Now?

Two paradigm shifts are occurring for client application architecture in VISTA. First, the Windows GUI environment has now supplanted VISTA's traditional character-based environment as VISTA's primary clinical point-of-use interface. Second, Web interfaces for clinical applications are on the horizon.

However, while more and more VISTA clinical applications are being developed as GUI applications, much less of a framework is in place to support those applications, as compared to their character-based predecessors. To take full advantages of the features of GUI and the Web, a more substantial set of application infrastructure services must be provided to support that application environment.

In the past, the comprehensive infrastructure framework for VISTA's character-based applications was provided largely through Kernel (and was, to some extent, framed by the restrictions inherent to the character-based environment). Menuing, application deployment and installation, security, session management, clinical alerts, file storage, process management and electronic signatures, for example, were provided for. Application modules could be developed and deployed independently, and yet still work together as an integrated whole. Most importantly, character-based clinical application developers were free to concentrate most of their efforts on creating healthcare applications, rather than on building infrastructure.

Today, however, VISTA application development is poised to shift dramatically towards creating GUI and Web applications by default, rather than character-based applications. This shift parallels the shift in the ratio of personal computers to character-based terminals at VA facilities, which has moved dramatically in favor of personal computers during the past year.

Meanwhile, VHA itself is changing rapidly. Ongoing advances in healthcare, demographic changes, organizational changes and legislative changes all mean that the business needs of VHA are changing constantly. The information systems that support VHA's operations need to be flexible and adaptable to accommodate VHA's changing business needs.

There are a number of critical issues being faced by our current client application architecture. Desktop clinical applications should be more easily deployed, and better integrated on the desktop. COTS desktop clinical applications should be easier to integrate with VISTA. A set of infrastructure services should be available for clinical developers to take advantage of from their clinical client applications. Wireless networks will, in theory, allow clinicians to have roaming access to the clinical patient record. Components for VISTA clinical applications should be more easily developed and deployed, both nationally and locally, to help the Office of Information (OI) and the VISNs to more rapidly meet VHA's changing business needs.

The shift to GUI and Web client applications provides a window for VHA to put in place a framework that will support the flexibility and adaptability that is needed for VISTA's applications to respond to VHA's business needs. The Clinical Application Architecture defines a blueprint to meet these needs — to construct an open, standards-based client environment for the development and management of the next generation of VISTA's client clinical applications, running in both GUI and Web environments.

A revolution is taking place at VISTA's clinical point-of-use. The traditional VISTA character-based environment has become obsolete, and with its decline, the full capabilities of GUI and Web applications can be exploited to do what has never been done before — fully automate clinician workflow, bringing to bear the power of the computerized patient record, combined with the clinician workflow integration formerly achieved only with paper patient record. VHA should not let this opportunity pass.

1.5 Scope

The scope of the Clinical Application Architecture is the client portion of VISTA clinical applications: the point-of-use interface. Anything that affects the client portion of those clinical applications is within the scope of this architecture, including:

 Sign-on functionality for client applications

 Desktop integration between client applications

 "Alerts" interface for clinical applications

 Web interfaces for client applications

 Extensibility of VISTA GUI application interfaces

 Deployment and installation of client clinical software

 Client/server connectivity

Examples of items that are not within the scope of this architecture, to the extent that they do not affect the architecture of the client portion of clinical applications, include:

 Clinical application data storage

 Server-to-server HL7 and X12 messaging

 Server application architecture

The time period for full implementation of the current iteration of the Clinical Application Architecture is 1-3 years: Fiscal years 2001-2002.

1.6 Scope in VHA IT Reference Architecture Model

The VHA IT Reference Architecture Model is a high level abstraction defining the logical layers that together comprise an information system
.
[image: image18.png]

Business: policies and procedures that identify the business aspects of the architecture. It also refers to the strategic objectives of the organization and the architectures’ ability to align with and support those objectives.

Information: information flow throughout the organization. It defines what, when, where and how information is captured from or presented to the user.

Applications: responsibilities and functions of the applications utilized by the organization. The applications level assists in ensuring that application functionality aligns with and supports the information flow and business strategies and objectives.

Data: standard methods of data storage and utilization that supports the accuracy, interoperability, and processing of data throughout the organization. It further defines the type of data and authoritative source.

Infrastructure: includes the policies, procedures and standards governing the infrastructure framework of the organization. It describes ... the systems and interconnections providing for or supporting data, applications, information and business functions.
The scope of the Clinical Application Architecture is largely focused on the information layer (also called the presentation layer) as it pertains to VISTA clinical applications.

Inasmuch as the composition of the client tier (physical hardware) engages some aspects of the infrastructure layer (e.g., installation services for GUI PC applications, and client/server connectivity) the Clinical Application Architecture also focuses on those areas.

1.7 Who Is Affected

· VISNs and sites funding OI, VISN and facility IT initiatives

· OI teams building and integrating the infrastructure proposed in this architecture

· OI Technical Services teams designing clinical applications

· OI Customer Services teams, primarily National VISTA Support (NVS), deploying and supporting clinical applications

· OI BEST and OI Implementation and Training Services, supporting VISTA through training and other initiatives

· VISNs and sites deploying and supporting clinical applications

· VISNs and sites integrating COTS and locally developed clinical applications with VISTA
· Clinicians using VISTA clinical software

1.8 Document Organization

	Section
	Description

	1.
Introduction
	Overview

	2.
Critical Issues for VISTA GUI Clinical Applications
	Identified areas where the infrastructure supporting VISTA GUI clinical applications is insufficient

	3.
Vision
	Desired trends and guiding principles

	4.
VISTA 2001 Clinical Application Architecture
	Description of the infrastructure needed to support client VISTA clinical development

	5.
Risk Mitigation
	A list of risks in implementing the Clinical Application Architecture, and mitigation of each risk

	6.
2001+ R&D Horizons
	Future-looking infrastructure services

	A.
Tactical View
	Summary of the tactical recommendations presented throughout the document

1.9 Related Strategy Documents

The Clinical Application Architecture is a drill-down from the VHA's overall VHA Information Technology Architecture (ITA) and OI's Migration Analysis for VISTA.
	Document
	Focus
	Author

	VHA Information Technology Architecture (ITA)
	Overall VHA IT Architecture
	OI VHA Architects

	VISTA Migration Analysis
	VISTA Application Migration Strategy
	OI TS VISTA Data Systems and Integration (VDSI) Service

	GUI SAC (standards for VISTA GUI development)
	Client Application Development Guidelines
	OI Standards and Conventions Committee (SAC)

	Clinical Data Repository Strategy (in progress)
	Data Storage for Clinical Applications
	OI TS Electronic Medical Records Service

	VHA Automated Medical Imaging: A Framework for Strategic Decisions
	VISTA Imaging
	OI TS Clinician Desktop Service

1.10 Definitions/Terminology

	CCOW
	Clinical Context Object Workgroup. The name of the original workgroup whose work was adopted by Health Level Seven to become a standard for visual integration on the clinical desktop, CCOW is now used to refer to this standard.

	Clinical Context
	State information that a user establishes and modifies while using healthcare applications at the point-of-use.
 The context is common because it establishes parameters that should uniformly affect the behavior or operation of multiple healthcare applications. Examples of context (state) include patient identity, user identity, and encounter.

	Clinical Desktop
	The end-user interface for clinical healthcare applications in VHA.

	COMCOS
	Caché Object Migration: Common Object Services (COMCOS) project. This OI Technical Services project will build a foundation that allows the current VISTA software and new object-based applications to coexist on the same platform and to provide for the planned migration of individual applications to object-based implementations.

	Component
	Components are a packaging technology. A component packages application functionality for distribution and re-use: "A component is a re-usable, self-contained body of functionality that we can use across a broad application base"
. A request to a component instance, in a multi-tier architecture, is often done from outside the process in which that instance lives.

	ITA
	Information Technology Architecture (ITA). The Clinger-Cohen Act of 1996 mandated that each Federal agency's CIO develop and maintain an ITA to improve agency management of IT resources in service of each agency's business goals. The Clinger-Cohen Act defines an ITA as "an integrated framework for evolving or maintaining existing information technology and acquiring new information technology to achieve the agency's strategic goals and information resources management goals."

VHA's ITA, as a major subset of VA's agency-level IT planning, provides a reference architecture for VHA's information systems, defining the information technology direction for VHA. It includes a technical framework promoting a single information technology vision across VHA, supporting business needs at all levels of the organization.

	Layer
	Distinct logical layer of code performing one of the following functions: Presentation, Business or Data Access. Modern architecture separates the code for each of these functions into distinct, separate layers, often executing on separate systems (tiers).

	Migration Analysis for VISTA
	An OI Technical Services document describing the goals and implications for application migrations in the VISTA environment.

	Monolithic
	Constituting a massive undifferentiated and often rigid whole. For example, a character-based application whose data access, business and interface code is intermingled in the same set of M routines is monolithic — the three layers of code are undifferentiated and hard to separate.

	Object
	Objects are an implementation technology, based in a model of computing whereby the data are supported as enclosed objects. Each object is an instance of a class. Each object has methods to manipulate the object. For example, an object could be a prescription. Methods could be ordering, printing, renewing, canceling, etc. Each method performs a distinct operation (process) on the data. One of the major benefits of using object technology is that the methods serve to document the business rules in a way that makes them clearly understood.
 Objects are typically small and fine-grained, and often live in the same process as they are called from.

	Tier
	Tiers represent the physical hardware employed in an architecture. A 2-tier architecture, for example, is the client/server model, with the client PC system as one tier, and the back-end server system as the second tier. A 3-tier architecture uses one system for the client, one system for the processing of information (business rules) and a third system for the database. An n-tier system uses multiple systems for processing business rules and/or the database.

	Total Cost of Ownership (TCO)
	TCO is a concept developed by GartnerGroup (an information technology consulting organization) to reveal the hidden costs in a corporate IT environment. Initial purchase price (hardware and software) is just one component of TCO; additional costs are involved, including deployment, asset management, image maintenance, support and downtime.

S E C T I O N
2. Critical Issues for VISTA GUI Clinical Applications

[image: image19.png]

VISTA's major technology shift to GUI is now reaching its fruition, with GUI workstations widely deployed in VISTA clinical settings. Moreover, the number of GUI clinical applications in VISTA is rapidly expanding.

The trend away from character-based clinical applications in VISTA is accelerating. Enhancement of the character-based version of CPRS will be discontinued in January 2001
. The majority of VISTA clinical functionality used in VHA facilities will, in the very near future, be provided by GUI applications.

This increase in GUI client applications is bringing some critical issues to the surface for sites, VISNs and VISTA developers to deal with:

· High TCO of VISTA Client Applications

· Clinician Workflow

· Synchronizing Multiple Applications

· Composite GUI Applications in a GUI Environment

· Extensibility

· Client Services Gap

· Stalled Web Strategy

· VISN Data Center Consolidation

These critical issues that are now surfacing require changes in VISTA's client application architecture, in order for clinicians to get the most benefits from the GUI environment. Each critical issue is discussed in this section.

Solutions to address these critical issues are proposed in section 4, "VISTA 2001 Clinical Application Architecture".

2.1 High TCO of VISTA Client Applications

[image: image20.png]

Total Cost of Ownership (TCO) is a concept originated by GartnerGroup in 1987 to reveal the hidden costs of IT systems in a corporate IT environment. Initial purchase price (hardware and software) is just one component of TCO; additional costs include deployment, asset management, training, support and downtime.

The impetus behind TCO came about primarily as a way to measure the hidden costs of personal computers as clients in corporate settings, although measuring TCO extends to all IT resources. Like many other organizations, VHA, up until about five years ago, made use of "dumb" terminals as its primary client interface. "Dumb" terminals have a very low TCO, in terms of deployment, maintenance, support and downtime.

VHA's shift to modern client application technology has resulted in large numbers of "dumb" terminals being replaced by an equivalent large number of Windows-based PCs. One of the primary drivers has been the availability of the CPRS GUI. The end-user experience is much richer, allowing CPRS to present a clinical experience unachievable over "dumb" terminals.

The price for this richer experience is a much higher TCO for each VHA medical facility. Keeping a large number of PC workstations up to date with the most recent versions of VISTA GUI client software (and other PC software) requires a major expenditure of effort on the part of IRM at each site (e.g., updating upwards of one thousand personal computers with new software every 4-8 weeks).

2.1.1 VISN, Facility and NVS Strategies to Lower TCO

VISTA GUI clinical applications are only part of the TCO problem for sites. Virus software updates, terminal emulator updates, Microsoft Office updates and Microsoft Windows updates, to name a few, also are client software that sites must find ways to update on every one of their client PCs.

A number of coping strategies have been devised by VISNs, VA facilities and National VISTA Support (NVS) to lower the TCO of VISTA GUI workstations. Each strategy has advantages and disadvantages.

No one strategy is optimal for all of the configurations sites must typically support. In addition, none of these strategies is successful enough to address the needs of sites in coping with clinical application deployments such as CPRS. Additional ways must be implemented to lower the TCO of hosting client applications in VISTA.

	Strategy
	Advantages
	Disadvantages

	Manual IRM installation
	· Doesn't require additional software or hardware infrastructure
	· Extremely labor-intensive for IRM

	Manual End-User installation
	· Requires minimal IRM participation
	· Anecdotal statistics suggest that only half users can be relied upon to upgrade their own software.

· NT workstation security settings must be relaxed to allow end-user installs.

	Cloning/Ghosting
	(Creates a binary image of the applications and data from a completely set up PC's hard drive, which can then be "ghosted" to the hard drives of other machines, via Symantec Norton Ghost, Altiris RapidDeploy, et al.)

· Quicker than manually installing each piece of software.

· Enables faster recovery when PC hardware fails.
	· Hard drive images are hardware-specific; a different image must be built for every different PC hardware configuration.

· Moving a hard-drive image is network-intensive at installation time.

	Centrally mounted application drive
	· Software does not need to be installed on client PCs, only on the centrally mounted drive; only shortcuts and registry settings must be updated on client PCs.
	· Slower load times for applications (~5-10 seconds).

· Increasing size of CPRS executable makes this impractical at some sites.

· Impractical for remote clinics over slow communications lines.

	Microsoft Systems Management Server (SMS)
	· Offers the ability to automatically push out new software to PCs during off-hours. This takes a load off IRM and off the network.
	· Enterprise deployment of SMS is a non-trivial undertaking. Contractual issues have delayed full VHA implementation.

	Microsoft Windows Terminal Server (WTS) Thin Clients
	· Software only needs to be installed on WTS, not on each PC workstation.

· WTS allows older PCs to run much faster.
	· Running applications over WTS is network intensive.

· The user experience is slightly less satisfactory.

· Use over slower communications line (e.g., dial-up) is not recommended.

· Impractical for graphics-intensive applications such as VISTA Imaging.

	CPRSUpdate Autoupdate Program
	· Auto-updates the CPRS executable if the server changes
	· Not scalable to more than a few fixed files

· Not generic; not robust

2.2 Clinician Workflow

[image: image21.png]

The GUI version of VHA's Clinical Patient Record System (CPRS) is now widely adopted as VISTA's primary clinical information interface. The history of the versions of CPRS released up to and including the current version comprises the achievement of creating a mostly computerized patient record. This in and of itself has been a Herculean development task by the development teams involved.

However, clinician workflow has been altered to achieve this computerized patient record. To start with, significant portions of patient-centric data entry remain un-automated. When one clinician "shift" passes information on a group of patients to the next shift, that information is not passed electronically, and is not part of the patient record. Consent forms are still done on paper, rather than electronically (technology exists that can capture patient signatures, but has not been implemented in VISTA).

In the encounter checkout process, it's not possible for clinicians to easily figure out the schedule of their own clinic for the future, when trying to figure out when patients should return. Clerks access this, but the views are very limited. Scheduling consultations or referrals is very time-consuming even if the clinic to which the patient is being referred is literally down the hall.

Often, clinical notes are written up at the end of the day, rather than at the time of the encounter, because time constraints don't leave enough time for physicians to key in data entry during clinic time (a slower process than in the past, when clinicians would write encounter notes on the physical paper record at the time of encounter).

The wish list for clinical functionality is huge, and much of it revolves around the goal of automating clinician workflow and integrating that workflow with the computerized patient record.

Traditional techniques clinicians use to rapidly create paper-based clinical notes, such as color, writing boldly, writing diagonally, or using symbols, are unavailable in ASCII text-based electronic notes, increasing the time required for data entry. Special ordering situations such as chemotherapy orders and controlled substance prescriptions fall outside of the fully automated electronic order process. Largely due to workflow considerations, encounter forms are usually printed, filled out by the clinician, and re-keyed in by ward staff. "Flow sheet" views of procedures performed (based on date) and other clinical data are created and maintained by hand.

Other portions of the clinical workflow are automated, but not in a fashion that is integrated with CPRS. Nursing workflow is completely separate from CPRS, and is not implemented in GUI. Surgery (surgical, anesthesia and nursing components) is not integrated with CPRS, and is not implemented in GUI. COTS clinical applications are difficult to integrate on the desktop. CPRS does not provide a group view of patients based on that physician's rounds or responsibilities.

In the past, when clinicians conducted rounds with non-electronic (paper) patient records, they typically employed a rolling cart to carry the patient records on their rounds. This was actually a better workflow solution for clinicians, but it created a far inferior paper patient record.

The introduction of Bar Code Med Admin (BCMA) is the first example of the movement to reincorporate information technology into clinician workflow in VISTA. Through the use of wireless networks and mobile workstations, BCMA is merging the use of information technology into the actual clinician workflow (in this case, the administering of medication). Doing this mates the superior tracking capabilities of electronic records with the actual clinician workflow moving from patient to patient.

Clinicians would benefit from the application of a similar approach to the rest of VISTA's clinical applications, which are now primarily workstation based at stationary workstations. According to GartnerGroup:

The killer app for healthcare (actually the killer app for physicians and nurses) will be portable, hands free continuous speech recognition, with intuitive, pen-based, handwriting and stroke recognition for immediate editing by the speaker. A device no bigger than today's Palm Pilot, with a wireless headset, will make speech recognition the "path of least resistance" to writing anything into the medical record. The device will be ever present because it will also be a general-purpose digital wireless phone/page, personal digital assistant (PDA) and Internet micro-browser. The ... device will contain the user's digital certificates, private keys, and biometric reference data "burned in" at the time the device is initialized/personalized. There will be a built-in finger print scanner, and sufficient on-board processing power to perform all necessary cryptographic functions such as digital signatures and challenge/response protocols. Healthcare ISVs will augment the basic capabilities of the device with pen-based, checklist-oriented input, and uploads to the PDA functions."

In this vision, the challenge for VISTA clinical development efforts is bringing information technology off of the stationary workstation and into line with clinician workflow, where it is most efficient for clinicians. This would make the computerized patient record process-centric, rather than process-separate. Doing this would meet one part of Dr. Kizer's challenge to VHA, to very literally provide the right information, at the right place, at the right time.

2.3 [image: image22.png]

Synchronizing Multiple Applications

When VT terminals were VISTA's clinical interface, only one application could run at a time, in a single "window".

With the advent of GUI (and multiple GUI applications), it is now quite common for clinicians to open two or more clinical application windows at any given time (see Figure 1 below). With this possibility, some new desktop integration issues arise:

 What if the different windows on the desktop are displaying information for different patients? This can be a patient safety issue.

 Is it reasonable to expect a clinician, when they switch the current patient in one application, to move to every other window to manually change the patient there as well?

 Is the clinician willing to engage multiple sign-ons to access COTS applications integrated or interfaced with VISTA?

When healthcare applications used VT terminals as their interface, only one application could run at a time, and there was no need to synchronize applications. In the GUI environment, with several separate applications running simultaneously in disconnected, separate windows — and with no coordination between applications regarding which patient is loaded in each application — the result is a clinician-unfriendly, labor intensive interface to use, with the detrimental effect of discouraging clinicians from opening more windows (and accessing more information) about a given patient.

2.3.1 CCOW Standard for Clinical Context Switching

The HL7 standards body, in 1999, adopted the Context Management ("CCOW") Specification. This standard provides mechanisms for visual integration and synchronization of clinical applications on the desktop. It provides standards-based mechanisms to synchronize applications based on patient, user, encounter, and custom contexts. It is a new standard, and it is beginning to gain support in commercial healthcare applications.

Patient safety and end-user efficiency, in a multiple application window GUI environment, are the drivers for clinical context management. Some of the potential benefits of implementing CCOW functionality such as automatically synchronizing applications on a patient include:

 More efficient clinical operation (less keystrokes for clinicians when changing patients and other clinical subjects)

 Greater patient safety (prevents inadvertent viewing of different patients' data and the potential adverse reactions that could arise from misunderstandings of presented data)

 "Out-of-the-box" desktop integration of COTS GUI clinical applications

 End-users perceive disparate applications, linked by context switching, to be modules of the same "greater" application

Types of VISTA systems where clinical context switching is — or will be — an issue include:

· Clinical Workstations (e.g., CPRS, VISTA Imaging and Clinical Procedures)

· Mobile Workstations (e.g., BCMA and Vitals)

Figure 1: BCMA, Clinical Procedures, VISTA Imaging and CPRS as they could appear running simultaneously

[image: image1.png]Bar Code Medication Administration =[o/x]
Ele Eepore Duelit fip
MASSACHUSETTS SCPATIENT (MALE) || Vitual Dus Lit Pasameters: Schedule Types I
7701 N Cirice Procorures General Data e
Hooion < BN 0002 Fle Hepors Heb
IMRMICHAEL MALE 13344321 AN D1, 1965
(G ot vied e [
Procedure Procedure DatefTime Order Number Order DatefTime
f ccro JAN 11, 2000@10:00
" VISTA Imagiog Syetom oo teus |
Fle Options View Repons Help = -,
BB <
2 Sl S R [N EN = W T s Slasite 57
Pationt: pemopetient |
B Vi CPRS in e by: reonJoamn (DERRDEMD
rangls o Mary T 2 e S Toos Holp
MILLAM C. 1AA2 CURTTEAM /DefaTana
TS0 M0 e 12190450 P GRECNJOAN | snei ity
AciveProblens Allrges Advese Reactons Posings
- Foromyags =] [worsin =] [e o205
Skeetn i Cie Note 10245
Rt W Staus s i Cis ot Mar11 38
BB, esiil Enphyceme Ci Nole 10235

382t | Db Ch Bronchits W/ Exacerb

r“a

Enthonycn
=l tvoma Pak Irection

=1 [J0erS Second Test Note

Cirical Feminders Du

Date

P e Mecsios
2 N0 active medications found

ab Resuls - Pt 30 Days

(fluenza Vaccne Sep2238

ek

Apponiments /Vists Adrissions

B [Lirun Blood Serum 5p Lb ME76

Vit

Sep019 [T 96 Moy o]
Urea Nitogen Blood Sewum SpLb #16725ep 0138 [P 72 May
Cosgultion ot &) Blood Plasma Sp Jul 31,98

R0 ey
P 120580 My
W7 Ay

o appontnents/admissions o

(CovrSheet b T3 O ete {Conahe RO/ St AL g

2.3.2 VISTA Pre-CCOW Clinical Context Switching Strategy

VISTA does not currently support the (recently ratified) CCOW standard for desktop visual integration. Several years prior to the first version of CCOW, CPRS and VISTA Imaging implemented a proprietary mechanism for context switching, using Windows messages:

Windows messages can be exchanged between CPRS and other cooperating programs. Each time the patient or document changes in CPRS, a specially registered message informs other programs of this event.

Master-Slave Relationship: Windows delivers the message to all applications running on the workstation. The message exchange is one-way only, from CPRS to other applications. If, for example, the patient is changed in another application, CPRS does not respond by changing its patient (and so forth for the other state change events). VISTA Imaging, on the other hand, changes its context as appropriate when notified of a context change by CPRS. The following VISTA applications respond to CPRS-initiated context changes through its pre-CCOW mechanism:

· Clinical Procedures (under development)

· GUI Vitals/Measurements (under development)

· VISTA Imaging

The context changes communicated through this mechanism (created in order to integrate CPRS and VISTA Imaging) are:

 Patient selected

 TIU note selected

 Radiology Report selected

 Closing of CPRS

One-Time Synchronization: CPRS also provides a mechanism, through its Tools menu, to synchronize contexts when launching of other clinical applications from CPRS. Existing programs can be configured locally to launch from the CPRS Tools menu. Run-time parameters can be passed when launching programs. Using this facility, a program can be coded to access the same patient, upon launch from the Tools menu, as is currently loaded in CPRS.

CCOW Comparison: CCOW offers a more robust mechanism for context switching. In addition, it offers the potential to provide seamless integration on the desktop between COTS clinical applications and VISTA clinical applications, if implemented in VISTA. It provides an opportunity to create a standards-based, open VISTA clinical desktop environment.

2.4 Composite Applications in a GUI Environment

[image: image23.png]

CPRS is an example of a composite application: An application that is made up of distinct parts, and yet presents a single, unified front end, bringing together those distinct parts. CPRS implements a unified patient chart metaphor that acts as the GUI front end for approximately twenty VISTA applications.

The main reason to create composite applications is to implement a metaphor (such as the patient chart) that spans multiple applications. High usability and rapid access to organized information are the result for the clinician end-user.

Had CPRS not taken this approach to implement the patient chart metaphor, today we might have fifteen separate GUI clinical applications running in fifteen different windows — clearly not a desirable situation for the clinician. Not only would this have been more confusing for end-users, but it would also incur a higher demand on the back-end server, with fifteen different open server connections, fifteen different patient inquiries each time a new patient is loaded, and so forth. In effect, success would have been replaced with failure.

2.4.1 Integration Difficulties

The details of how to integrate the front ends of multiple applications into a unified, single-window application are addressed in the architecture of the composite application.

CPRS, as the leading VISTA example of a composite application, was built as a single, compiled executable for a number of reasons, not the least of which was the need to meet delivery times. It employs a manual integration approach: the CPRS front end is developed, maintained, compiled, tested, and released as a single executable by a single team. Its architecture also reflects the non-existence of any VISTA GUI composite application framework at the time of its design.

The drawback of this integration approach is the resulting strong technical barrier towards parallel development by multiple teams. This results in a development bottleneck, since integration is done manually, for the most part by developing rather than integrating parallel development. In short, the architecture of manual, design-time integration is monolithic, and not decomposable:

"…If you design your target IS to be completely decomposable (i.e., composed of separate components for each separable function), you'll be able to modify those components that do not support current needs when the time comes. The critical success factor, and challenge in deployment, is proper identification of those functions that can be built using separable components. This is becoming the key software (and hardware) design challenge. This challenge underlies the current inability to design for reuse."

The results of using a monolithic architecture for a composite application includes:

· Some client application functionality never makes it into the composite application because it does not get created, because only one team can work on the application

· Some client applications that would ordinarily be part of the composite application are developed instead as standalone applications

2.4.2 Desired Outcome

Building and distributing GUI CPRS using a monolithic, compiled architecture enabled wide field deployment. As time has moved forward, however, this monolithic architecture is now limiting.

VISTA's composite clinical applications, such as CPRS, will encourage flexibility and the easy replacement and addition of components and modules, with the ability to take advantage of "threaded", "asynchronous" development efforts. Moving to a more modular, flexible composite application architecture may result in more functionality, flexibility and responsiveness in the delivery of functionality to the end-user. Until such a time, however, it is difficult for both field-based development, and parallel national development, to be included in composite applications such as the integrated CPRS patient chart.

2.5 Extensibility

[image: image24.png]

VISTA has a long tradition of support for local (facility-based) extensions to VISTA software. Continuing in that tradition, the current (draft) VHA Software Management Handbook allows local customization of national software, to meet the needs of local sites, within the following parameters:

· Adding new data elements to national files

· Adding input, sort, and output templates

· Creating new local software components and integrating them with the national application

Modification of application code, while discouraged, is allowed, though it carries the caveat that it becomes the responsibility of the local facility to maintain those modifications. Also, modification of any component within a national software application that implements a controlled procedure, contains a controlled or strictly defined interfaces, or reports data to a database external to the local facility, cannot be locally altered.

A set of conventions for name-spacing and number-spacing allows local modifications to co-exist with national software. This policy has enabled sites to tailor character-based VISTA applications to fit site-specific needs that national developers may not have anticipated:

· Entirely new, locally developed code modules could be written at the site and incorporated into a national package's menu structure such that to the end-user it was indistinguishable from a national application.

· COTS applications (e.g., MUMPS Audiofax, Data Methods Word Manager, etc.) could be melded with VISTA functionality, and be on a near equal footing with national VISTA applications from the user's perspective (use of the same signon, integration into a national package's menu structure, etc.)

· Locally created copies of the menus of national packages could be restructured and modified to fit the needs of particular local groups of users.

These practices have allowed innovations to be pioneered locally, with some innovations being rolled back up into national code. Supporting local extensibility promotes productivity, shared knowledge and understanding of the software application at hand.

By contrast, the new wave of GUI clinical applications is far less extensible. Adding to or modifying any component of a VISTA client GUI application requires modifying the application's source code. While the source code for compiled GUI applications can usually be obtained, modifying GUI application source code is a much different task than modifying interpreted M routines in the M run-time environment. In order for local modifications to succeed, the local developer must completely duplicate the compile-time environment that existed at the point-of-assembly for the national software — a daunting and potentially high-risk task for large, complex GUI software packages.

Some features to allow a degree of local extensibility have been added to some GUI applications. For example, CPRS provides a "Tools" menu that is site-customizable, allowing the launch of local applications from within CPRS. Nevertheless, the degree of customizability is not at the level that has been provided in the character-based environment, which generally allows the site to extend any aspect of the entire application. Local facilities cannot add new, locally developed components to the CPRS patient chart, for example (the equivalent of adding a new locally developed option to a national package's menu). It is also quite difficult to integrate COTS desktop software with VISTA desktop software such that the applications appear integrated to the end-user.

It should also be noted that lack of extensibility at the local level also translates to lack of extensibility at the national level. It is very difficult to engage in parallel development of some new or existing portion of the GUI front end, using multiple teams on separate timelines, when the architecture of the front end necessitates its control, compilation and management by a single team.

In order to meet the very real needs of sites to sometimes customize applications to meet local needs, ways must be found to afford the same degree of local extensibility for new (GUI and Web) VISTA applications as was customary for traditional character-based VISTA applications.

2.6 Client Services Gap

[image: image25.png]

Kernel has traditionally provided a suite of services to VISTA character-based applications. For the most part, this suite of services is not available for VISTA GUI applications. The list of services includes:

· Unified Signon

· Unified VISTA Menuing

· Alerts System

· Device Selection

· Task Management Utilities

· Server Date/Time Utilities

· Electronic Signature

· Security Key Lookup

Another common application service, not under the Kernel umbrella, is the Patient Lookup interface (VADPT).

Each of these would be very useful to have on GUI clients as services for VISTA clinical applications to use. However, except for signon, none of these services is in place. This results in either non-provision of the service (e.g., alerts), or in each application reinventing the service (e.g., patient lookup).

The VHA Architects, in the FY2000 ITA, state:

Our architecture vision includes implementation of a service-based architecture, also known as Common Services Architecture (CSA). In contrast to the monolithic software architecture of a single application, a service-based architecture forms a “services backplane” that will provide the technical underpinning support to open up systems and applications. Instead of viewing applications as stovepipes addressing specific niche needs, a CSA transforms these applications into the integration of granular “Lego” building blocks of common services that can be re-used application to application.

The key is to create sharable interfaces capable of supporting identified requirements. Based on these services, these “Legos” can be used to enable existing and legacy applications to intercommunicate with new service capabilities. This approach provides a legitimate glide path to integrate existing applications and capabilities into the architecture. New services can be integrated into this architecture as long as they implement interfaces corresponding to the defined signatures and behaviors. The key to this architecture is marshalling the application’s processing flow and promulgating department policy requiring its adoption.

The GUI clinical desktop would benefit from the availability of services that are taken for granted by developers in the character-based VISTA environment. Now that the majority of clinical functionality is shifting to access by users of GUI applications, the time is certainly ripe.

Productivity, consistency, and user-friendliness will all be served if the development efforts supporting VISTA application services are shifted from the character-based environment, to supporting the new GUI and Web client environments.

2.7 Stalled Web Strategy

[image: image26.png]

The rise of Web browsers as the application user interface has opened up many new venues for the use of applications. For example, in the B2C (business to consumer) space, Web technology has enabled home computer-based shopping, auctioneering, banking and stock trading, to list a few examples. In the B2B (business to business) space, the Web is enabling commerce in industries as diverse as automobile parts suppliers, energy trading, and commodity trading. These implementations prove that Web technology:

· Can be implemented in a secure, flexible, and effective manner

· Fosters the development of innovative, previously unimaginable business solutions

· Extends applications' client front ends to locations they previously could not reach

One of the reasons the Web is so attractive for B2B and B2C applications is that, done properly, Web applications are largely platform independent. A multitude of known and unknown clients can access a Web site's applications, including PCs, Macintoshes, Unix clients, Palm PCs, and so forth.

Another of the reasons the Web is so attractive is that it is one of the best ways to achieve low TCO. With Web applications, application deployment is performed solely at the server level; client installation and version synchronization issues become irrelevant. The most recent version of your application is always accessed by the end-user through their Web browser.

Web interfaces are also familiar to users and are easy to master. The reach of Web-based applications can extend beyond GUI workstations on the facility LAN, to VHA workers dialed in to the facility from home workstations, and non-traditional "edge of network" devices such as personal digital assistants (PDAs) used within the facility LAN. Particularly given the distributed nature of clinical work to CBOCs, homes of providers, and to contracted providers and facilities outside of VHA and across the TCP/IP firewall, issues include version control and timely installation updates are becoming a major issue with GUI applications in VISTA today.

In the more distant future, after additional issues including security are resolved, Web access will also be a key ingredient to enabling veterans to access their own patient records and other related information.

2.7.1 Healthcare Industry Trends

According to Mittman and Cain
, a number of institutions have begun using Web-based front ends for electronic medical records, including Partners of Boston, the Mayo Clinics, and Columbia Presbyterian Medical Center, New York. They predict that Web-based front ends to electronic medical records will attract significant development effort over the next five years.

Many of the major, traditional integrated Healthcare Information Systems (HIS) vendors are creating or deploying Web-interfaced versions of their HISs:

	HIS Provider
	Web Strategy

	Cerner
	Cerner is partnering with CareInsite to provide Cerner technology as part of the CareInsite delivery platform for Internet services to physicians and payers. In addition, in 1999 Cerner placed into production its first two ASP (Application Service Provider) clients.

	IDX
	"IDX believes that the Internet can play a new and critical role in broadening access, creating efficiencies, and providing new channels to renew trusted, time-proven communication between the doctor and patient in the chain of healthcare delivery."
 "The fundamental components of our technical platform include:

 Web-based thin-client architecture as the basis for accessing patient data, enabling greater convenience for users, allowing desktop device independence, and reducing costs for training and equipment;

 SQL databases running under Microsoft Windows NT, supporting a standardized approach to reporting and analysis;

 Component-based software written as Business Objects, resulting in more naturally integrated products because of the unique way Business Objects can represent real world concepts.

"We believe our approach to technology, particularly the emphasis on Web- based, thin-client architecture, will prove to be superior to the existing "fat client" approach that can burden customers with unnecessary expenses for equipment maintenance requirements and software upgrades. "

	McKesson HBOC
	"'The portability and real-time connectivity of the Internet create a significant opportunity for McKessonHBOC to deliver readily deployable, integrated solutions that manage key components of cost and quality between providers, laboratories, pharmacies and payors,' said David L. Mahoney, co-president and co-chief executive officer of McKessonHBOC.
 By acquiring Abaton.com, a vendor of Web-based tools for physicians, McKessonHBOC will launch its full portfolio of clinical management products on the Web.

	SMS
	"SMS has adopted thin-client, Web-based technologies for all new application development. These new technologies co-exist with current configurations to meet user needs in the areas of cost, function, and technology maturity."

2.7.2 State of the Web in VISTA

None of the currently released VISTA applications employ a Web interface.

OI Technical Services also released VA FileMan SQL Interface (SQLI), which, by supporting the use of Open Database Connectivity (ODBC) listeners, has enabled locally built Web applications using Active Server Pages (ASP) at a number of sites.

CPRS does support Web-links to "reference sites" such as medical literature through the Clinical Reminders package. This is not a Web-based VISTA application, but it is a use of external Web resources from within CPRS.

2.7.3 Intranet vs. Internet

Use of Web technology does not necessarily imply opening up access to VISTA from across the Internet. Web technology within the VHA Intranet will enable client-server access to VISTA, in much the same role as the RPC Broker performs for GUI applications.

The VHA Information Technology Architecture 2000, however, states:

The trend to provide new and innovative ways for patients to interact with their health care system will continue. Patients will be able to enroll, schedule appointments, order prescription refills, and provide and receive discharge information with increased ease via the Internet, email, or voicemail. Patients will have a greater ability to communicate with clinicians remotely, to participate in on-line discussions with support groups, and to participate in on-line health surveys. Wireless devices (e.g., smart phones, and personal digital assistants [PDAs]) will extend these services beyond brick-and-mortar boundaries to the mobile community.

Before VHA can consider creating any special Web-based VISTA applications that are intended to run outside the VHA firewall, i.e., over the Internet, additional issues will need to be resolved (protection against Denial of Service attacks, scalability overload, etc.). Some form of a gateway system, non-operational data store, or similar strategy will be needed to insulate operational VISTA systems from the Internet.

However, making Web technology a core part of VISTA is a good first step towards supporting access to VISTA over the Internet by users such as patients and non-VA provider partners.

VISN Data Center Consolidation

[image: image27.png]

VISNs have been moving over the past few years to implement patient care, product service lines, and manage resources on a VISN-wide basis, in a VISN business model. VISTA systems are already being impacted by this change in business model.

One of the new trends in this migration to a VISN business model is VISN data center consolidation. VISNs are embarking on the process of consolidating their data centers for the following reasons:

· Enable better cross-facility patient-centric care, performance analysis, service management and efficiency of resource utilization

· Maximize and better utilize scarce IT resources

· Control IT resources better, providing a more centralized VISN focus and direction

· Reduce costs and provide better IT services

· Provide access to consolidated database from anywhere in the business model

· Improve the ease of data extraction and the quality of data extracted from VISN databases

· Provide IT support across the continuum of care

· Eliminate variability in IT systems that obstructs progress

· Avoid re-work at each facility IT system

In addition, IT systems will need to accommodate drastic mission changes that are anticipated in VA over the next five to ten years. Some facilities and VISNs will get larger, and some will get smaller. It will be important that the IT infrastructure put in place to manage patient records over the next few years will support a VHA that may be drastically different ten years from now than it is today.

Because of these factors, there is a growing trend towards regionalized data centers to replace the current model of VISTA systems at every facility. VISN data center consolidations are already underway at VISNs 2 and 14. Future regional data centers may consolidate the databases and server systems at the VISN level, and perhaps an even higher regional level, resulting in a much larger number of users — and clients — per server system.

While these changes are changes to VISTA's server architecture, there is an inevitable spillover effect for VISTA's client application architecture as well. In particular, the client architecture must be scalable enough to be viable in the context of the larger reach of any one server system.

The most obvious implication for client applications is on their total cost of ownership (TCO). If a new server application is installed that requires a client upgrade, 15,000 clients may need to be simultaneously upgraded rather than, for example, 1,500 clients (already a daunting task). Client applications will need to be scaleable and deployable in an environment that may be changing from the individual facility to a massive, consolidated regional data center.

S E C T I O N
3. Vision

3.1 The Web is the Future Client Environment

VHA's Information Technology Architecture 2000 states that VHA's primary strategy for data presentation and display will migrate from character-based and Windows GUI-based applications to web browser-based applications:

Use a Web browser for platform independent presentation/display. A Web browser will be the primary vehicle for information and content presentation/display. Web browsers provide a consistent display mechanism to which end-users are already accustomed. A Web browser also provides a level of independence between platforms, and isolates applications from display concerns on the myriad of devices and platforms available. Further, this browser-based approach minimizes hardware requirements from the client-side platform by placing the processing burden on the server.

The potential benefits of running Web-based interfaces, inside of VHA's firewall, as the front end for Intranet-based VISTA healthcare applications include:

 Ease of deployment. Deploying a new application to Web clients is as simple as updating the server. Total Cost of Ownership (TCO) is dramatically lower.
 Familiar Interface. Web interfaces are familiar to users and are easy to master.

· Remote user support. The ITA states, "VHA's standards-based information architecture will enable a seamless interface to VA care and services independent of provider, organizational structure or geographic boundaries. Increasingly, this integrated service will be provided across all points of care and related services including contracted providers and external government agencies."
 Web applications, with far fewer bytes to transfer than would be required to install and keep up-to-date a compiled application on the remote client, are particularly suited to the occasional remote or external user.

 Rapid development times. Developers are supported by mainstream technology and robust COTS tools.

 Third-party maintenance of core infrastructure technology. The key middleware piece (Web server) and client-server connectivity (Web browser) is offered commercially by a number of vendors.

 Extensibility. Since Web applications are not compiled, they are easily extensible for the purposes of a) parallel, separate national development and b) local development.

 Non-traditional computing devices. Web front ends are particularly well suited for use on a variety of non-traditional computing devices, such as personal digital assistants (PDAs). Applications need to be "self-adapting" to run in a variety of environments, and Web applications are inherently suited to self-adaptation using run-time environment detection.

The common theme underlying all of the critical issues identified in the previous section is the need for greater adaptability and flexibility in VISTA application design and deployment. The key to addressing these critical issues, therefore, is moving to a more adaptable and flexible application architecture.

Character-based interfaces don't offer a sufficient set of features to represent complex clinical data, and are gradually being phased out and supplanted by GUI applications. GUI applications, meanwhile, are not very adaptable — they are not designed to be flexible or pliant at runtime. GUI application interfaces are largely fixed in advance, and do not lend themselves to modular, run-time adaptability and flexibility.

The Web, on the other hand, is inherently modular:

Because the communication between the client (Web browser) and the server is page based, it is easy to add components or functions through the addition or modification of individual pages. Simple as this sounds, careful planning is still required. The Web infrastructure is primarily geared toward controlling the user interface, and the back-end system must still support the desired functionality.

This modularity is incredibly valuable because it supports self-adapting applications (applications that adapt their form based on the platform in use and user), parallel development/deployment of separate application modules within a composite application, and local extensibility of those applications. Web-based applications are inherently friendly to these types of capabilities through the flexibility to add and modify pages to multi-page Web applications at run-time — given the proper supporting composite application framework to organize those application modules.

VHA's Information Technology Architecture 2000 states:

A Web browser will be the primary delivery vehicle for the vast majority of information presentation. An architecture that embraces Web-based approaches offers many opportunities for both the stakeholder and developer communities. Given the pervasiveness of the Web and the degree of independence between platforms that it provides, it is a natural selection consistent with the standards-based, component-based application infrastructure that has been chosen.

Additional benefits from the Web model include platform independence, incredibly low TCO, a familiar user interface and an interface model that is highly scalable (to, for example, a consolidated VISN data center.) Even Microsoft, behind the scenes, is transitioning itself to become a Web services company. Microsoft senses that the Windows model has reached maturity. They're moving their enterprise to the Web. VA should be, as well.

GartnerGroup identifies the "killer app" for healthcare in the years ahead being a Palm-like wireless PDA, speech-enabled, that roams with physicians and nurses in the midst of their workflow, allowing input into patient's records and access to those records in real time, process-centric, in the moment that the information is needed. The applications that run on these types of devices will need to be flexible, adaptable, and platform-independent. Because of these needs, they will be Web-based applications. Supporting these types of applications is vital if VISTA is to support the degree of workflow integration desired by clinicians.

Therefore, the key challenge, with regards to the client portion of VISTA's clinical applications, in the months and years ahead will be managing their transition from character-based and GUI interfaces to Web-based interfaces.

3.2 Maturing Windows GUI Application Model and Migration

One question that naturally arises after stating "The Web is the future client environment" is, how much should VHA continue to invest in its GUI interfaces, as the Windows GUI application model reaches maturity?

Looking to the outside for an answer to this question, many players in the industry are migrating from a client/server model for enterprise computing to a Web-based, network-centric model — Oracle, IBM and Sun to name a few.

However, the most dramatic answer to this question is provided by another industry player who has recently embraced the shift away from GUI client/server — namely, Microsoft, the architect of Windows and center of the universe for Windows GUI applications.

Microsoft continues to invest in Windows, but is doing so now in a maturity mode — reaping the benefits of its long investment in Windows. However, Microsoft is devoting significant resources to a "bet the farm" future based on the Web, making major changes to their development platform (Visual Studio), Windows, BackOffice and Office to begin implementing the architecture now known as Microsoft.NET:

Microsoft is creating an advanced new generation of software that melds computing and communications in a revolutionary new way, offering every developer the tools they need to transform the Web and every other aspect of the computing experience. We call this initiative Microsoft.NET, and for the first time it enables developers, businesses and consumers to harness technology on their terms. Microsoft.NET will allow the creation of truly distributed Web Services that will integrate and collaborate with a range of complementary services to serve customers in ways that today's dotcoms can only dream of. Microsoft.NET will drive the Next Generation Internet. It really will make information available any time, any place and on any device.... Microsoft.NET will help drive a transformation in the Internet that will see HTML-based presentation augmented by programmable XML-based information.

While not necessarily using the suite of Microsoft technologies, VHA will make a similar transformation. We've made a significant investment in our GUI applications — CPRS in particular — and we should continue to reap the benefits of that investment. However, we also need to reinvent VISTA to meet the critical issues of today and tomorrow. Clearing the way to create a Web-enabled business environment is the clearest path to meet those needs. Moreover, in a few years, Web-enabled business environments may comprise the bulk of what is available from the main industry players.

However, there are a number of open questions regarding the current Web environment. Which parts of Web technology are mature, and which are still evolving? Can each of the complex interface elements in CPRS and other clinical applications be implemented using Web technology? How long will it take to put in place a Web infrastructure in VISTA? When will the World Wide Web Consortium (W3C) standards for XML style sheets (XSL) be finalized? Will all browsers support W3C standards uniformly? Is the Web fast enough for transactional patient care? An article on DoD's evolving IT strategy notes:

The U.S. Department of Defense Military Health Services ... has scrapped its initial strategy ... using Web-browser based technology to enable the patient records system to operate on dumb terminals linked via intranets or the Internet. The department's newly revamped system — being tested this year — is based on client-server architecture. "The Web will not support transactional patient care; it is too slow," contends Navy Capt. David Snyder, M.D., a surgeon and program manager for the records system project, called Composite Health Care System II, or CHCS II. "Our second concern is the security of the Internet. I do think our future is the Web, but we're just not there yet."

VHA's approach with the Web will be different. VHA will start with non-mission-critical applications, rather than employing the bet-the-farm approach of CHCS II's first attempt. VHA will build its Web expertise and infrastructure gradually, transitioning its use of Web technology to mission-critical applications as the technology proves itself. In addition, VISTA will begin deploying Web technology within VHA's Intranet, rather than over the Internet. The potential benefits of Web technology are too compelling for VHA to ignore or avoid.

Another area to look at for migration strategies, besides Microsoft, are those organizations that have implemented Web-based front ends for their formerly proprietary back-end systems. Charles Schwab & Co. is arguably one of the most successful at this approach. In 1995, they began their first pilot to implement Web-based, online trading. The first production browser-based Web trading interface was provided to customers in April 1996. Since then, online trading has taken off for Charles Schwab & Co., with over $11 billion in securities being traded through their online Web site each week in 1999.

For the more advanced trading needs of higher-tier customers, however, Schwab recently introduced a GUI-based application — Velocity, albeit with its connectivity to Schwab still provided via the Internet. For its advanced customers, browser-based Web interfaces are not adequate (speed is the issue.) Velocity implements a small subset of time-critical trading functions, relying on the presence of their normal browser-based Web interface for the balance of less time-critical functions. To combat the TCO issues inherent with GUI applications, Schwab provides dynamic, as-needed, automatic updates of its GUI software to their customers using Marimba Castanet, a product similar in functionality to Microsoft IntelliMirror. Ultimately, when technology evolves such that browser-based Web interfaces support the same functionality as Velocity's GUI interface, the need for that GUI interface (and its supporting Castanet infrastructure) will be diminished.

The same scenario, under different names, will also play out in VISTA. It will likely become a mixed GUI and Web-based client environment for some time to come. The CCOW standard, for example, will support the synchronization of application clients in a mixed GUI-Web environment. So, while VHA will reap some of the benefits of implementing Web-based applications immediately, it will also need to find ways to mitigate TCO and other issues for GUI applications, for some time to come.

3.2.1 Migration Path

Because of the wealth of potential advantages offered by the Web, VHA will:

· Begin piloting non-mission-critical Web-based applications.

· Begin designing and building out infrastructure with knowledge that the browser-based Web interfaces will gradually supplant Windows GUI applications as the dominant VHA client application interface.

· Move all significant business logic currently in GUI client applications to a server-based business application layer.

· Begin to decompose large GUI clinical applications (e.g., CPRS) into modular, constituent components. This decomposition of large applications into components (based on the utility, atomicity and performance of those components) will also prepare those same applications for re-implementation as modular, component-sized Web-based interfaces.

3.3 Presentation Layer Criteria for Web and GUI Front Ends

By default, the presentation style used by VISTA applications will be Web-based, because of the dramatically lower TCO and resulting cost savings to the agency by deploying Web-based applications, as compared to GUI client/server applications.

However, a set of considerations comes into play that will justify the use, by selected applications, of a GUI client/server presentation style. GartnerGroup (in research published in early 1999) notes:

Although the Web is insuperable in terms of ease, speed and scope of deployment and the Web browser metaphor is popular, intuitive and easy to learn, we do not expect Web-based clients to totally displace other user interfaces within enterprise applications. Instead, we anticipate a coexistence of multiple client technologies.

The following table presents a non-exhaustive list of some of the criteria to consider when deciding whether to target an application for a Web or GUI C/S presentation style:

	Criteria
	Preferred Style
	Notes

	External users and occasional users
	Web
	Benefits external and occasional users by removing the need to install and maintain a GUI application, particularly those accessing the application via dial-up lines.

	XML-formatted data
	Web
	Using a web browser to present XML-formatted data is a natural.

	Extensibility
	Web
	Customization and extensibility is typically easier with Web front ends, due to the inherent modularity of Web pages.

	Non-traditional computing devices
	Web
	PDAs and other mobile computing devices may not be Windows-based, but will typically support Web browsing and Web-based application front ends.

	Remote or occasional user access
	Web
	Keeping applications up-to-date for occasional, or remote (slow dial-up lines) users is transparent in a Web-based environment

	Complex data input
	GUI C/S
	Web browsers offer only a small subset of the data input controls available for GUI C/S front ends. Controls not offered by browsers include spin boxes, sliders, tables with dynamic header sorting, date/time controls, and "smart" combolookup boxes.

	Extremely fast response time
	GUI C/S
	"Web-based clients cannot yet match well-architected GUI-based 'thin clients' and terminals in terms of response times...."

	Client-side medical image processing
	GUI C/S
	Rapid panning and zooming of medical images is impractical in Web front ends.

	Need to offload processing to client
	GUI C/S
	If some processing that would otherwise occur on the server must be offloaded to the client, Web front ends are not well suited. Note, however, that a "middle tier" could also solve this problem.

	Need to cache data on client
	GUI C/S
	Some client applications retrieve large amounts of data for a patient, and then cache that data on the client. This is easier with a GUI C/S front end.

	Voice recognition
	Depends on Application
	It is possible to embed voice recognition capability throughout a GUI C/S front end. While voice recognition can be used with Web browsers, the degree to which it can be embedded in a Web-based front end may be less than with a GUI C/S front end.

The ultimate crucible for deciding the suitability of an application front end is usability testing. If one or more of the criteria above is required, but cannot be achieved with a given presentation style, and if no suitable workaround is available, then an alternate presentation style should be employed.

The clean distinctions made in the table above are blurred somewhat, however, based on the following categories of Web front ends:

	Category
	Description

	"Plain"
	Pure HTML

	"Ultralight"
	HTML and scripting (e.g., Dynamic HTML)

	"Full Figure"
	Applet-based (java applets, ActiveX, etc.)

	Embedded HTML in GUI C/S
	A GUI C/S application embeds browser functionality in one of its windows to display XML data or perform data entry, for example.

Java applets, for example, may provide some of the data input controls not available in a "Plain" web front end. However, with those additional controls come trade-offs, such as greater download time and compatibility issues for the browser (e.g., Netscape vs. Internet Explorer) and operating system (e.g., availability of compatible java virtual machine for a PDA).

GartnerGroup sums up the decision-making process that is required as follows:

Organizations should not put in place generalized "all and only Web" user interface strategies, but rather they should tactically select client styles and technologies, on a user set by user set basis, according to specific objectives....

VISTA will need to employ this approach, so that it can continue to provide maximum functionality to end-users, while providing the lowest cost to the organization.

3.4 Clinical Application Architecture Components

Based on the critical issues identified earlier, the Clinical Application Architecture has three primary goals:

1.
Increase flexibility and adaptability so that application development can more rapidly meet VHA's business needs

2.
Lower the TCO of VISTA clinical application clients

3.
Improve the workflow integration of VISTA clinical applications at the point-of-use

The Clinical Application Architecture employs two strategies to meet these goals:

1.
Improve the capabilities of Windows GUI clinical applications

2.
Transition the default VISTA client application modality from GUI-based to Web-based

The architecture that follows is dynamic, and, like the Information Technology Architecture upon which it is based, will be updated frequently based on real-world experiences implementing the architecture, the emergence of new needs, and the emergence of new technological solutions. This Clinical Application Architecture will adaptively align itself with the continuous, "evergreening" process of the Information Technology Architecture, as well as that of VHA itself.

3.4.1 Standards and Conventions

Standards and conventions will be needed to guide both GUI and Web-based VISTA development.

3.4.2 Business Application Layer

Traditionally, VISTA's business, interface and data access code have been intermingled into one large, monolithic set of M routines. Modern application architectures, however, separate these sets of code into distinct, separate layers, the key component being the separate business application layer.

Benefits of such a business application layer include much easier support of multiple client interfaces (e.g., GUI and Web) since the separate business application layer is easily accessed from any interface layer. This architecture also allows easier technology "switchovers" (e.g., changing VISTA's underlying database technology), by isolating its thousands of clients, as well as hundreds of thousands of lines of business logic, from the underlying database layer so that we can migrate the database layer if needed.

Implementing a true business application layer will results in decomposable (non-monolithic) applications, which are the key to database independence, client platform independence (Web), and an open architecture.

3.4.3 Web Services

The foundation to support Web-based applications is a robust set of Web services. These include Web servers themselves (to respond to client http requests), a Web application development framework (encapsulating the low-level details of Web-based interactions, and providing high-level services such as an environment to run server-side applications), and middleware to connect Web server requests and server-side applications to VISTA's business application layer.

Putting in place Web Services is vital to support the first wave of VISTA browser-based clinical application development. As technology matures, and VISTA developers' and users' experience with Web applications increases, browser-based applications will come to the fore as VISTA's primary client interface. Beyond lower TCO and increased scalability needed to support consolidated VISN data centers, browser-based applications will also be key to support the wireless mobile Palm-like platform that GartnerGroup identifies as the emerging "killer app for healthcare" over the next several years. Increasing the integration between VISTA's computerized patient record and actual clinician workflow is the next major step for VISTA, and VHA must ensure it does not miss this opportunity.

3.4.4 GUI Composite Application Framework

The advent of the GUI platform has allowed much more functionality to be placed in a single application interface than was ever possible with character-based interfaces. This has been a benefit for the clinician, placing far greater amounts of information at the clinician's fingertips. However, this has been accomplished by building massive, monolithic "composite" application interfaces that lack sufficient adaptability, flexibility or extensibility, due to the nature of pre-compiled, GUI application architecture.

Decomposing applications such as CPRS into their atomic components, and creating a GUI composite application framework to assemble and deploy those components at run-time, will be a major task, particularly because GUI application architecture is not inherently friendly to this sort of approach. However, the work that goes into decomposing CPRS and clinical applications like it will be re-used, and will lay some of the groundwork for, the eventual transition of clinical applications to a Web-based composite application framework — the browser-based Web application environment that is inherently more friendly to modularization.

3.4.5 Web Composite Application Framework

The next generation of VISTA client interfaces will be browser-based. The Web supports run-time assembly of interface components, each as a separate page in a multi-page Web application. CPRS has already proven the value of the "composite" application approach to interfaces. The Web Composite Application Framework will put in place a re-usable framework for building composite, multi-page Web applications, organized around a tab metaphor, with run-time extensibility enabled by adding additional tabbed pages. The framework will be available for use by CPRS and, separately, for use by any other composite application. The framework will allow developers to concentrate on application solutions, rather than infrastructure solutions. A non-mission-critical, Web-based CPRS "Lite" will be the proving ground to develop the first Web-based composite application framework.

3.4.6 Context Management

Windows-based workstations introduce the strong probability that clinicians will want to run multiple clinical applications simultaneously. Without a means to synchronize those applications, clinicians will be discouraged from doing this, resulting in less information being available "at the right time." CCOW provides an open, standards-based mechanism to synchronize clinical applications, on a variety of subjects including patient, user and encounter, increasing data quality, patient safety and clinician productivity.

Linking applications by CCOW also offers the possibility of "extending" functionality by writing a separate application, synchronized by CCOW, rather than trying to force additional functionality into an already over-brimming composite application (e.g., trying to make GCPR client functionality part of CPRS vs. creating a standalone GCPR client synchronized with CPRS via CCOW).

Finally, CCOW will synchronize applications in a mixed GUI and Web environment, and a mixed in-house and COTS environment, both of which are in VISTA's future. Implementing CCOW is an important step in VISTA's migration to robust clinical interfaces in a GUI and Web-based environment.

3.4.7 Kernel Components

Needed Kernel functionality will be provided as components in VISTA's business application layer. This will allow both GUI and Web front ends to be provided, as needed. This will also allow these components to be accessed as application services. For GUI-based VISTA client applications, interfaces to Kernel functions will be provided via Dynamic Link Library (DLL) wrappers. For Web-based VISTA applications, initial Kernel support (i.e., signon and device selection) will be provided. And as rapidly as the use of Web technology in VISTA allows, Web-based front ends for the remaining Kernel components will be provided.

3.4.8 VISTA Web Portal

In the character-based interface to VISTA, Menu Manager acted in a limited capacity as an aggregating platform. In addition to providing organized package menus, it also manages option-based security, option help, notification of alerts, notification of new mail, and the user-time out feature. The result was a unified experience for the end-user. The goal for the VISTA Web portal is to provide the same unified experience for Web users.

3.4.9 Server Connection

Server connections provide the mechanisms for clients to connect to servers, typically to execute remote procedures on the server. For GUI applications, some form of server connection is needed — currently, in VISTA, that connection is provided by the RPC Broker. As VISTA's business application layer changes, the method of server connection between its GUI clients, that business application layer and VISTA's back-end servers will also change.

3.4.10 Online Help

A framework for online help is needed, particularly as online help supplants paper documentation as the primary source for information on how to operate VISTA software. In particular, for composite GUI and Web-based applications, a framework will be needed so that online help can be created and deployed in the same composite manner that the underlying application components will also be created and deployed.

3.4.11 Installation Services

Installation services are needed to lower the TCO of VISTA's current and future crop of GUI applications. Based around the Microsoft IntelliMirror infrastructure that VA already owns license to, this infrastructure will provide mechanism to implement self-updating client applications, supplementing the "push" functionality provided by Microsoft SMS. Combined, these two mechanisms will greatly lower the TCO of VISTA GUI client applications, as well as other GUI applications like Microsoft Office, anti-virus software, and Windows itself.

3.5 Guiding Principles

3.5.1 Take Advantage of Standards

Creating solutions based on IT industry standards provides many benefits for VHA:

· As a user of standards, VHA benefits from a more widely available pool of compatible applications, tools, and processes.

· As a supporter of standards, VHA helps promote widespread adoption of such standards in the healthcare industry. This in turn feeds back as a benefit to VHA, as an even wider pool of standards-based COTS products becomes available, compatible with our own standards-based systems.

· As a participant in the standards process, VHA has influence over the standards and can help ensure that standards will meet VHA's needs.

Standards should not be adhered to blindly; for example, marketplace acceptance of a standard is critical for the benefits of using a standard to be realized. However, for those standards that gain marketplace acceptance, the benefits are there for VHA to realize.

3.5.2 Leverage Commercial Tools

An article on architectural best practices for healthcare information systems states:

Leverage existing platform infrastructure. Focus on solving business problems; leave the complex infrastructure work to the database, middleware and operating systems vendors.

OI is beginning to embrace this model for infrastructure development. For example, OI introduced Delphi as the new client development tool for VISTA. The success of this decision, embodied in the success of the applications that the decision has spawned (CPRS, VISTA Imaging, et al) has demonstrated the value of integrating commercial infrastructure technology with VISTA. The integration was performed through the development of an in-house bridging tool — the RPC Broker — that enabled the use of the commercial infrastructure tool, Delphi.

Meanwhile, we have found that building in-house infrastructure — a strategy that paid dividends for VHA in the late 1970s/early 1980s — has its own trade-offs that are a much greater factor to consider in this day and age of widely available commercial technology. The trade-offs come in the form of scarcity of in-house resources, and in the form of delays that can affect the entire VISTA development food chain:

We don't want to keep trying to play catch-up, reconstructing M versions of tools widely available commercially. VISTA developers would be much better off if we instead build bridges to leverage commercially available tools.

Given the scope of today's IT industry, it seems wasteful to ... recreate from the ground up every desirable commercial technology that we wish to use, and to force the rest of VISTA's application developers to wait in the meantime.

OI is barely able to keep up with the maintenance of its current in-house infrastructure (Kernel, VA FileMan, MailMan, HL7 messaging, etc.). Introducing additional in-house infrastructure for new technologies such as ORBs, Web servers, parsers, installation services, etc., should be done only when there is no other choice available.

VHA's ITA suggests the use of "... highly leveraged technologies that are cost effective, modular and readily available."
 The Clinical Application Architecture embraces the same principle.

3.5.3 Consider Long-Term VISTA Migration Issues

Discussing VISTA migration issues is beyond the scope of this paper. However, because CPRS and other GUI clinical applications are on the cutting edge of VISTA functionality, they are by default on the front lines of VISTA's emerging migration strategy as well. Following good migration practices will give VHA more flexibility to introduce new technology into VISTA as needed. It is essential that all technical solutions for the VISTA GUI clinical applications are also playing roles in VISTA's long-term migration strategy, particularly for central pieces of software such as CPRS and other clinical applications.

One key migration issue to consider is that the M environment will not always be the environment used to host any VISTA application, particularly as time moves forward. Achieving clean code separation between the presentation, application and data layers will help provide VHA with additional application hosting options in the future.

As well as making choices that are compatible with VISTA's long-term migration, considering long-term migration issues also means working towards a future state that is reachable from VISTA's current state. A key component to any migration is the transition, and incremental transitions have been found to be the most effective.

For more information, see Technical Services' Migration Analysis for VISTA: Reengineering VISTA to Achieve a Next Generation VISTA (http://vista.med.va.gov/vdsi/).

For a generic perspective on migration, see Brodie and Stonebraker's Migrating Legacy Systems: Gateways, Interfaces & the Incremental Approach (see the References section for additional information).

3.5.4 Legislative Requirements

VA must adhere to legislative requirements to base its major technology initiatives on established IT architecture statements already defined by the agency. For VHA, the document of reference is the ITA. All major IT initiatives must be traceable to the ITA to ensure compliance with the Clinger-Cohen Act. The Clinical Application Architecture follows this principle.

3.5.5 It's the Clinician, ... !

The goal of the VISTA Clinical Application Architecture is to provide maximum information technology services for VHA's clinicians, in the service of their mission to provide the highest quality healthcare to veterans, their dependents and beneficiaries.

[image: image28.png]

In particular, the Clinical Application Architecture supports the kind of client interfaces that will help to fully integrate computerized patient records with physician workflow, improving the day-to-day processes of patient care.

Its components will leverage both self-developed and COTS technology as its infrastructure underpinnings, to promote the optimal experience for VHA clinician providers in the delivery of the final product of health care — to VHA’s customers, its patients.

S E C T I O N
4. VISTA 2001 Clinical Application Architecture

The VISTA Clinical Application Architecture is the first comprehensive attempt to synthesize the experience of VISTA GUI clinical application developers to date. It addresses the spectrum of infrastructure issues that clinical developers are now contending with, specifying an architectural framework to follow, and makes recommendations where needed on how to construct that framework.

Implementation of the Clinical Application Architecture will provide a structure in which VHA can develop and manage clinical applications as discrete modules of functionality, independent of development team and/or location. Extensibility and local development will be supported. Clinical application development teams will be able to work in parallel, distribute their respective client applications separately, and yet have those applications come together as an integrated whole at the clinical point-of-use.

The Clinical Application Architecture defines a set of services to support development and deployment for the client portion of clinical applications:

· Standards and Conventions

· Business Application Layer

· Server Connection

· Web Services

· GUI Composite Application Framework

· Web Composite Application Framework

· Context Management

· Kernel Components

· VISTA Web Portal

· Online Help

· Installation Services

Each of these services is described in detail in this section. Also, a chart at the head of each service description lists those issues from the "Critical Issues for VISTA GUI Clinical Applications" section of this paper that the proposed service, if implemented, will address.

The goal of these services is to define — and, once implemented, provide — an open, standards-based environment for the development and management of the client portions of VISTA clinical applications. The resulting set of standards, conventions, tools and techniques will support modular client application development, for both GUI and Web-based VISTA clinical front ends, and integration of other software not internally developed.

Services Gap

The first two data columns in this chart illustrate the current services gap between VISTA's character-based architecture and its current (de facto) GUI architecture. The third data column shows how the services proposed in the Clinical Application Architecture will fill in these gaps.

	
Service
	VISTA Character-based Architecture
	Current (de facto) GUI Architecture
	
Clinical Application Architecture

	Standards and Conventions
	· ANSI M on the server

· VA SAC

· M-11

· OI SOPs

· Mop-up
	· N/A
	· VA GUI SAC

· VA Web SAC

· CCOW

· Microsoft COM/COM+

· OI Handbooks and Standard Operation Procedures (SOPs)

	Business Application Layer
	· Standard M

· APIs
	· Standard M

· APIs

· RPCs
	· Standard M

· APIs

· RPCs

· Objects

	Web Services
	· N/A
	· N/A
	· Microsoft IIS Web Server

· CSP and ASP Application Frameworks

· MS Active Server Pages/ODBC

· Web Browser (client)

	GUI Composite Application Framework
	· N/A
	· N/A
	· Integrated GUI Composite Application

	Web Composite Application Framework
	· N/A
	· N/A
	· Integrated Web Composite Application

	Context Management
	· N/A
	· Pre-CCOW mechanism
	· CCOW (GUI and Web)

	Kernel Components
	· Kernel OS Utilities

· Kernel Device Handler

· Kernel User's Toolbox

· Kernel TaskMan User Interface

· Kernel Alerts

· Kernel Menu Manager

· Kernel Security Key API

· Kernel Sign-On

· M-based Electronic Signature
	· M-based Electronic Signature

· RPC Broker front end to Kernel Sign-On

· N/A (all others)
	· Alerts Module (GUI and Web)

· Device Handler Module (GUI and Web)

· User Toolbox (GUI and Web)

· TaskMan User Interface (GUI and Web)

· VISTA Option File-based Web Options

· Kernel Security Key RPC

· M-based Electronic Signature and PKI-based Electronic Signature

· Other Kernel Functionality Modules as needed

	VISTA Web Portal
	· Kernel Menu Manager
	· Windows Menu System
	· Web Portal/Digital Dashboard

	Server Connection
	· Serial/LAT
	· RPC Broker
	· RPC Broker or successor technology

	Online Help
	· Kernel Help Frames
	· Windows Help
	· Windows Help

· HTML Help

· Web Help

	Installation Services
	· KIDS
	· Manual installation

· Cloning/Ghosting

· Shared Disk

· SMS

· WTS

· CPRSUpdate auto-update for CPRS executable only
	· Manual Installation

· Cloning/Ghosting

· Shared Disk

· SMS

· WTS

· Auto-updates for all client software via Microsoft IntelliMirror

4.1 Standards and Conventions

4.1.1 [image: image29.png]

What Is It?

The VISTA Standards and Conventions (SAC) have guided VISTA development over the years. They provide guidance on how to create applications that will integrate with the VISTA environment. In the past, the SAC has focused on provided guidance for how to create character-based, M applications.

A GUI SAC is needed to govern overall GUI development. The Clinical Application Architecture projects a future state that will support the needs specific to clinical applications running in the modern VISTA client environment. It does not attempt to address standards for current development, nor does it attempt to address future needs generic to all VISTA GUI applications. The GUI SAC will be the authoritative guide for standards and conventions for current development, generic to all VISTA GUI applications.

A Web SAC is needed to govern overall Web development. The Web SAC will function as the authoritative guide for standards and conventions generic to all VISTA Web applications.

Beyond the GUI and Web SACs, which must be applicable to all VISTA applications, clinical and otherwise, additional recommendations apply to VISTA clinical application development. The following standards and conventions are recommended by the Clinical Application Architecture, specific to clinical applications:

1.
Application Modality. When designing a clinical application module, the development team will choose the desired presentation modality that most closely fits the needs of their particular application. The following high-level guidelines may be used:

	
Application Criteria
	Modality

	
	GUI
	Web

	
	
Stand-alone
	CPRS Composite Application
	
Stand-alone
	Web
Composite Application

	Complex data input
	[image: image2.wmf]
	
	
	

	Extremely fast response time
	[image: image3.wmf]
	
	
	

	Client-side image processing
	[image: image4.wmf]
	
	
	

	Client-side data caching
	[image: image5.wmf]
	
	
	

	Offload processing to client
	[image: image6.wmf]
	
	
	

	XML-formatted data
	
	
	[image: image7.wmf]
	

	High extensibility
	
	
	[image: image8.wmf]
	

	Non-traditional computing device support (e.g., PDAs)
	
	
	[image: image9.wmf]
	

	Remote/ occasional access
	
	
	[image: image10.wmf]
	

	Part of Patient Chart Metaphor
	
	[image: image11.wmf]
	
	[image: image12.wmf]

	Lowest TCO
	
	
	[image: image13.wmf]
	[image: image14.wmf]

Disparate clinical application functionality will not be lumped together indiscriminately in a composite GUI application. Functionality will be included as part of a composite application only when it is part of the greater metaphor the composite application is implementing (e.g., the CPRS patient chart). For example, Primary Care Management Module (PCMM) is not part of the patient chart metaphor, and does not belong in a composite application alongside a patient chart (it will continue to be a standalone application).

In special cases, patient-centric clinical applications would not run in a composite application framework. For example, VISTA Imaging has special requirements where it often runs in its own network segment, and for interface engineering reasons it works better as a standalone application, rather than being tightly integrated as part of CPRS. Applications in this category will be synchronized using CCOW context management (see below).

2.
CCOW Context Management. All standalone VISTA patient-centric clinical applications will use the CCOW standard for context management. At a minimum, applications need to support the CCOW patient context (joining an existing context, and switching to a new context). For backwards compatibility, all standalone VISTA patient-centric clinical applications will support the CPRS pre-CCOW mechanism for responding to CPRS context changes. For more information, see "Context Management" elsewhere in this section.

3.
Look and Feel. VISTA clinical applications will strive for a look and feel that is similar to that of the mainstream VISTA GUI clinical application, CPRS. However, the need for exactly similar look and feel is to some extent relieved by synchronizing applications through CCOW — doing so has the effect on users of perceiving disparate applications to be modules of the same application suite, even with substantially different look and feel.

4.
Business Application Layer. All business rules – where practically feasible – will be placed in the business application layer, and not on the client (presentation layer). Separating the business rules from the client implementation will provide the level of application decomposability needed to support the eventual migration of VISTA's clinical interfaces from current technology (GUI) to future technology (Web), once that technology has evolved sufficiently.

OI Technical Services Standard Operating Procedures (SOPs) will need to be modified to take into account the new client-based and Web-based services provided by the Clinical Application Architecture.

Finally, a comprehensive, overall VISTA Individual Application Migration Strategy is needed to guide decision makers and development teams in technology and implementation choices, from the front end to the back end of VISTA, inside and outside of OI. The migration strategy will guide VISTA from the current VA FileMan/M based system to an architecture that allows open access utilizing industry standard tools. Each new VISTA application release becomes a new cornerstone of VISTA's future IT Architecture. Each new application, as well as providing needed functionality, can also help meet VHA's long-term enterprise IT goals, with proper guidance.

4.1.2 ITA Support

The "IT Plan" section of the ITA recommends the use of CCOW for all patient-centric clinical applications. It also recommends the use of Web browsers as the primary vehicle for content presentation and display.

4.1.3 Recommendations

The first GUI SAC needs to be completed and released to govern GUI development. The GUI SAC will be an evergreening (constantly evolving) document, as the existing SAC is, in order to guide GUI development as technologies (and VA's uses of those technologies) grows in leaps and bounds.

On the heels of releasing the first GUI SAC, a Web SAC will be created to govern overall Web development. The Web SAC will function as the authoritative guide for standards and conventions generic to all VISTA Web applications.

OI Technical Services Standard Operating Procedures (SOPs) will need to be modified to take into account the new GUI-based and Web-based services guided by the GUI and Web SACs.

Finally, a comprehensive, overall VISTA Individual Application Migration Strategy is needed to guide decision makers and development teams in technology and implementation choices, from the front end to the back end of VISTA.

4.1.4 Bottom Line

Standards and conventions are needed to guide GUI and Web development, particularly in an environment in which development of clinical applications will be distributed across many teams, and even across organizational boundaries.

4.1.5 How Do We Get There?

1.
Complete the GUI SAC. At the time of writing, a GUI Standards and Conventions (SAC) document has not yet been released, but an OI Technical Services committee is currently creating it.

2.
Create a Web SAC. A Web SAC is needed to guide VISTA Web application development.

3.
Modify OI Technical Services SOPs. The existing body of SOPs will need to be reviewed and modified as necessary to support the guidelines of the GUI and Web SACs.

4.
Create a VISTA Individual Application Migration Strategy. A set of guidelines will be generated for developers (and integrators) to follow, so that each individual application development effort will further VHA's enterprise goals in the area of IT Architecture. This strategy will be created as an output from the Caché Object Migration: Common Object Services (COMCOS) project, based on the experiences in creating the initial set of Kernel services as the first wave of a VISTA transition.

4.1.6 Critical Issues Targeted

Extensibility. The use of standards and conventions helps ensure that applications, and extensions to those applications, built by diverse application teams, will be function harmoniously when brought together on the end-user's desktop.

Business Application Layer

4.1.7 [image: image30.png]

What Is It?

VISTA's current client/server architecture, used by CPRS and other VISTA GUI applications, is 2-tier: the client system (a Windows PC) is one tier, and the M server, executing RPCs, running M routines and storing data in VA FileMan files, is the other. Business rules on the M server are often intertwined with data access. In a small number of cases, selected business rules are placed on the GUI client, for performance reasons, as well.

The next evolution in application architecture after client/server is to separate application code into three distinct layers:

Modern applications partition the system into at least three distinct logical layers of code known as User [Presentation], Business and Data.... This partitioning of functionality across layers not only allows the distribution of processing across multiple machines, but also creates a high level of modularity and maintainability in the code base.

In the VHA Information Technology Reference Architecture Model, this corresponds to the Applications layer:

[image: image15.wmf]BUSINESS

INFRASTRUCTURE

DATA

APPLICATIONS

INFORMATION

Policy

Standards

rule classes

time

Security

Source: Information Technology Architecture

Inprise describes the advantages of implementing a distinct business application layer as follows:

The advantages of a three-tiered environment extend beyond the life cycle of a single application. In fact, what is being built is not actually an application: it is a collection of client and server modules that communicate through standardized, abstract interfaces, and when combined they behave like an integrated application system. Each module is actually a shareable, reusable object that can be included in other application systems. This plug and play versatility is useful when an IT department needs to support different but related parts of the business.

The benefits of separating application code into the distinct presentation, business and data access layers, particularly when residing on separate tiers, include:

· Migration. Any given layer (data access, business or presentation) can be more easily migrated to a new underlying technology, because the code base in any given layer is much smaller than that of a monolithic application.

· Multiple interface support. Multiple interfaces (e.g., GUI, Web and even interfaces to other applications) can be supported without duplicating business rules

· Higher data quality. By not duplicating business rules for any interface, higher data quality is promoted through consistent application of a single set of business rules.

· Greater Extensibility/Reusability. Typically, reusability means wanting to add a new interface to an existing business object. Separating presentation, business, and data access code into componentized building blocks makes reusability much easier.

· Fewer client updates. Client applications only need to be updated when presentation rules change, but not necessarily when business rule change.

· Greater Scalability. Running each code layer on a different hardware tier offers the possibility in some situations of greater performance and scalability, by increasing the amount of computing power available to process business logic.

The OMG defines business logic as follows:

"A business object is defined as a representation of a thing active in a business domain, including at least its business name and definition, attributes, behavior, relationships, rules, policies and constraints. A business object may represent, for example, a person, place, event, business process or concept. Typical examples of business objects are: employee, product, invoice and payment."

Presentation logic, on the other hand, is code that forms the interaction between the user and business logic. It includes formatting information to present to the user, and the gadgets through which the user can effect interactions with the business application layer. For example, presentation logic for a Web interface consists of Web pages, possibly including the possible use of style sheets to present information, and Web forms through which the user can effect interactions with the business application layer. Presentation logic for a GUI Windows interface consists of a Windows application, which can present information in many ways and which can employ a variety of Windows controls to effect interactions with the end-user.

Ideally, to get all of the benefits listed above, the business application layer will reside on a separate tier from the presentation layer. This separation of presentation logic from business logic is also referred to as the Model-View-Controller (MVC) architecture:

"The gold at the heart of MVC [model-view-controller] is the separation between the user interface code (the view, these days often called the presentation) and the domain logic (the model). The presentation classes contain only the logic needed to deal with the user interface. Domain objects contain no visual code but all the business logic. This separates two complicated parts of the program into pieces that are easier to modify. It also allows multiple presentations of the same business logic. Those experienced in working with objects use this separation instinctively, and it has proved its worth."

However, there is a balance to be struck between purity and practicality:

If we analyze the drawbacks of a pure layer-to-tier mapping, the most obvious issue is that of round-trip calls that must be made between the user layer that receives user input and the business layer that validates the input. Well-designed applications should be capable of providing validation to the user as soon as possible. If the entire business layer resides on a middle tier, then even simple property validation becomes programmatically tedious.... This technique represents a significant amount of effort and bandwidth to find out that the user entered an invalid data of "June 31, 1999...." Thus, it would be advantageous to move some of this simple functionality to the client tier without having to move the entire business layer with it.
 [emphasis added]

An M-based technology such as Caché Objects is one compelling candidate in which to begin implementing this architecture in VISTA, because:

· It co-exists with the massive body of M-based VISTA business rules currently interleaved with VISTA character-based presentation logic and VA FileMan-based data access logic

· It offers a means of exposing and implementing those rules that conforms to modern development approaches

· It offers a chance to formally define interfaces, which can subsequently be migrated to other business application layer technologies in the future

COM+ objects and CORBA-based objects are also business application layer candidates, but further research is needed to determine how well they fit with VISTA's migration strategy (see the "2001+ R&D Horizons" section).

4.1.8 ITA Support

The foundation of the ITA, the VHA IT Reference Architecture Model, embodies the concept of implementing a separate business application layer in VISTA. Moving to a technology such as Caché Objects offers the unique possibility of creating a separate business application layer in VISTA, in a step-wise, incremental fashion that allows IT systems at medical centers to continue running.

The Migration Analysis for VISTA states:

VISTA will not be totally converted to a 3-tier architecture within the next 7 years. However, certain applications must be targeted to evolve to 3-tier. Applications that are expected to undergo frequent changes in support of VHA business needs, those that are expected to interact with COTS/GOTS products and those that directly interact with clinicians using client/server or Web interfaces.

Therefore, applications expected to have Web front ends (e.g., CPRS with a Web-based "CPRS Lite"), or that are evolving rapidly (e.g., CPRS, BCMA, and the suite of emerging bedside clinical applications) will evolve into a three-layer architecture.

4.1.9 Recommendations

Implementing a "separate application layers" architecture in VISTA is the next leap to take to modernize VISTA's overall system architecture. One of the goals of the planned Caché Object Migration: Common Object Services (COMCOS) project is the implementation of just such an architecture. This will enable the existing VISTA code base to be separated into distinct presentation, business, and data access layers.

From the point of view of supporting Web interfaces, implementing a business application layer is essential. This will allow business logic to be re-used as web interfaces are gradually introduced to VISTA. To achieve this, two things will be eliminated in VISTA:

· Business rules on GUI clients

· Business rules intermeshed with monolithic character-based code

4.1.10 Bottom Line

Implementation of a business application layer in VISTA falls under the domain of the COMCOS project. Use of a true business application layer will be a strong successor to the current mix of RPC Broker calls and client-side processing of business rules in VISTA. Rapidly evolving clinical applications such as CPRS, BCMA and the emerging suite of clinical bedside applications will separate their code into distinct presentation, business and data access layers.

4.1.11 How Do We Get There?

1.
Implement Caché (or Other Technology) At VA Facilities (NVS, VCIOC). National VISTA Support and the VISN CIO Council plan to implement Caché at all VA medical facilities. Implementation is slated for completion in summer 2001. This is a minimum requirement if the COMCOS project is to proceed with actually implementing a Caché Objects business application layer.

2.
Proceed with the COMCOS Project. TS R&D work in the Caché Strategic Evaluation Project (CSEP) suggests that implementing a business application layer is a desirable direction to move in. The Caché Object Migration: Common Object Services (COMCOS) project will move forward to develop the core in-house infrastructure and tools needed to integrate support for the new business application layer in VISTA.

3.
Convert Clinical Business Logic to New Business Application Layer. Move all business logic not currently on the M server out of clinical client GUI software, and place it on the server in the new business application layer technology implemented by the COMCOS project.

4.
Implement the First Clinical Application Using the New Business Application Layer. Identify a small clinical application or module that is not mission-critical. Implement the application placing all business rules in the new business application layer technology. The presentation layer will have no direct knowledge of the data access layer. Create and release the application in a short timeframe, developing needed infrastructure in parallel. The experiences learned in developing and deploying the first application will be used to direct further "separate business application layers" architecture development.

4.1.12 Critical Issues Targeted

Lower TCO. Moving to an architecture that supports a separate business application layer supports a VISTA Web strategy, which as a presentation layer provides an inherently low TCO.
Extensibility. Placing VISTA business logic in a separate business application layer makes that logic more accessible for local development to re-use in new ways, with new or enhanced user interfaces specialized to local needs. The business logic itself will be more easily extensible for local needs as well, by virtue of being unencumbered with data access and interface logic.

Web Strategy. Placement of business logic in an accessible business application layer assures that business logic won't need to be duplicated in order to be accessible from Web clients. When business logic is consistent, data quality is improved.

4.2 Web Services

4.2.1 [image: image31.png]

What Is It?

Web Services is the infrastructure Web-based access to VISTA applications via the HTTP protocol. Web Services comprises both Web server technology (the ability to support client connectivity via HTTP) and Web-based application technology (frameworks for supporting Web-based applications, including access to a business application layer and to M data).

Several existing approaches to provide Web services for VISTA have been explored, including IIS-based Active Server Pages, IIS combined with Caché Weblink, IIS combined with custom ISAPI filters, and an M-based web server (CAIRO's WebMan).

The following approaches to provide Web services for VISTA are the most in tune with VISTA's target architecture:

	Approach
	Details

	Microsoft IIS, Caché Server Pages
	Caché Server Pages (CSP) is InterSystems' next generation environment for Web-enabling Caché systems, optimized for Caché Objects. For more information, please contact InterSystems.

	Microsoft IIS, Microsoft ASP+ Web Forms
	The next generation of Microsoft Visual Studio is being retooled to support ASP+ Web Forms, a successor to ASP: "Web Forms allow developers to create cross-platform, cross-browser programmable Web applications using the same exact techniques previously utilized to build form-based desktop applications. Web Forms execute on the server providing fast runtime performance and generate an HTML 3.2 compliant document that can run in any browser." For more information, see http://msdn.microsoft.com/vstudio/nextgen/Webforms.asp.

4.2.2 ITA Support

The ITA strongly recommends the use of Microsoft Internet Information Server (IIS) as the standard VISTA Web server:

The MS Internet Information Server is built into the Windows NT Server operating system, which is also a VHA standard. MS IIS is a high-performance, secure, World Wide Web platform for creating, managing, and intelligently distributing information and live on-line applications.

4.2.3 Recommendations

Based on the principle of leveraging commercial technology, the Clinical Application Architecture recommends taking advantage of IIS. VA's Microsoft Custom License Agreement allows IIS to be implemented at every VHA facility. Doing so will enable support a diversity of mechanisms for accessing VISTA data over the Web, including Microsoft Active Server Pages, Caché Server Pages (CSP), and Microsoft Web Forms.

Note that IIS does not need to reside on the same "box" as Caché, in order to provide connectivity to Caché. InterSystems provides a bridge .DLL so that Caché and IIS can be completely independent implementations.

In addition, we recommend exploring both Caché Server Pages technology, as well as Active Server Pages technology, as candidates for a Web-based application framework for front ending Caché-based applications.

[image: image16.jpg](Cache-based applications are faster and more scaloble
because they execute on the Caché data servr.

Caché Web Server Application
Server Pages Scripting Servers
P otc)- (38,357, oc)

- s ot o oo oomncsn

Source: InterSystems Corporation

Important characteristics of the desired application framework include:

· Secure Sockets Layer (SSL) for security

· The ability to maintain state (user object, patient object) on the server when moving from one page to the next in the application — clinical data is too complex to maintain state using cookies or &-delimited URL fields

· The ability for separate, standalone, re-usable Web applications modules to interact and integrate as a single combined application, that can be invoked from each other as needed

· The ability to time out user sessions

· Ability to access a Caché Objects based business application layer

· Future portability to heterogeneous, e.g., non-Caché-based server environments

4.2.4 Bottom Line

Leveraging commercial Web server technology — IIS — as the basis of VISTA's Web services will provide robust mechanisms to support VISTA Web-based clinical applications. Bridging technology such as Caché Server Pages and Caché's ODBC listener and Caché SQL implementations provide the bridge between commercial Web servers and M.

4.2.5 How Do We Get There?

1.
Put IIS capability in place. Separate NT boxes will be needed to run IIS. IIS itself is already paid for with VHA's Microsoft Custom License Agreement. TS will work with the VCIOC, Customer Services, and Implementation and Training Services, to determine the best way to implement IIS at the field level.

2.
Enable SSL through PKI Digital Certificates. IIS supports SSL using Public Key Infrastructure (PKI) digital certificates, which can be procured in one of two ways, either through the implementation of a VA-wide Certificate Authority, or through the purchase of individual server certificates from PKI vendors. Implementing SSL will allow traffic between Web browsers and IIS to be encrypted and therefore protected.

3.
Deploy Caché VHA-wide. This will enable the possibility of using Caché Server Pages, the Web application development environment provided by InterSystems for Caché systems. This is scheduled for completion by OI Customer Services in early 2001.

4.
Proceed with the COMCOS Project. With a business application layer such as Caché in place at every VHA facility, building infrastructure (such as an automated mapping from VA FileMan to Caché Objects and Caché SQL) will enable VISTA data to be accessed in a variety of ways, such as through Caché Objects, Caché Server Pages, or via ODBC from Web-based Active Server Pages running on an IIS server.

5.
Implement the First Web-Based Standalone VISTA Clinical Application. Identify a small VISTA clinical application, which is not mission-critical. The application will be one for which a Web front end will be appropriate (i.e., not overly complex visually). Create and release the application in a short timeframe, developing needed infrastructure (e.g., Web-based Kernel signon) in parallel. The experiences learned in developing and deploying the first Web-based VISTA clinical application will be used to direct further VISTA Web-based development.

4.2.6 Critical Issues Targeted

Lower TCO. Web-based applications provide an inherently low TCO, as client distribution issues are rendered moot (other than assuring the presence of an appropriate Web browser on the client). Putting in place Web services that VISTA applications can depend on is the first step towards taking advantage of the low TCO offered by the Web.
Web Strategy. Putting Web server infrastructure in place provides the baseline support needed for a VISTA Web strategy. Note, however, that additional pieces are needed, in particular, certain Kernel services (e.g., signon) and an integrated Web-based composite application framework. For more information, see "Kernel" and "Web Composite Application Framework" elsewhere in this section.

4.3 GUI Composite Application Framework

4.3.1 [image: image32.png]

What Is It?

CPRS is an example of a composite application: An application that is made up of distinct parts, and yet presents a single, unified front end bringing together those distinct parts. CPRS implements a unified patient chart metaphor that acts as the GUI front end for approximately twenty VISTA applications. The main reason to create composite applications is to implement a metaphor (such as the patient chart) that spans multiple applications. High usability and rapid access to organized information are the result for the clinician end-user.
A GUI composite application framework will provide an integrated, component-hosting framework for composite GUI clinical applications. Its purpose is to solve the problem of extensibility for GUI applications: it allows related components to be assembled at run-time into a functioning, whole application. This enables distributed, parallel development of those components by multiple development teams, at both the OI and VISN levels.

The greatest benefit is providing greater flexibility and adaptability for large, composite client applications composed of many component features. These applications benefit from decomposition into components so that the depth and breadth of the development efforts can be shared and distributed among many teams. The GUI composite application framework will allow VISTA GUI clinical functionality to be created as standalone components, and be integrated at run-time so that development and deployment of each component can follow different paths.

Note that Microsoft Windows is not designed to support composite GUI applications. As such, the framework for building and deploying GUI composite applications must be self-developed by VHA.

Requirements of a component-hosting GUI composite application framework include:

· Single-window layout, with a tabsheet metaphor, capable of hosting clinical components

· Interaction between framework and components is via COM interfaces

· Site-configurable visual arrangement of the composite application components, including tabsheet configuration, placement of hosted components on a particular tabsheet, and location of components on the tabsheet

· RPC Broker (or successor technology) server connection, shared and available to hosted components via a COM interface

· Common, frequently needed context information (e.g., current patient, encounter, user and site attributes) is maintained by the framework as objects (to minimize server access by multiple components) and made available from the framework to hosted components via COM interfaces (with notifications distributed by the framework to its components when one of these objects changes)

· The ability to run several instances of the framework (e.g., one framework instance for CPRS patient chart functionality, a separate framework instance in a separate window for bedside functionality) at a site

· Component developer guidelines for GUI composite application framework compatibility and visual attribute compatibility

All participants in the GUI composite application framework will synchronize on the currently objects, such as user and patient, and change whenever a currently loaded object changes. Patient lookup can be performed through manual entry, bar code scanning, or a combination of both methods.

Some benefits of this design include:

· Achieves a unified interface with the optimum arrangement of functionality for the physician user (vs. a proliferation of many separate applications).

· Encourages parallel national development and local extensibility, increasing VISTA's flexibility and adaptability (vs. having a single team maintain and enhance a massive GUI front end).

· Reduces number of open connections (to one), resulting in only one active partition on the server, instead of one per component (vs. each component maintaining its own independent connection).

· Reduces number of calls to the server for patient and user information, as well as less development work (vs. each component opening its own patient and user objects).

· With the Patient and User objects maintained by the composite application framework, the framework is the most logical agent to change context for both the user and the patient. The framework-to-component dialog for context changes should parallel the dialogs specified in the CCOW standard.

It will be possible to create several different applications (e.g., one application for the CPRS patient chart, a different one for bedside clinical needs), each implementing a different metaphor, composed of some different and some overlapping components, using the same underlying GUI composite application framework technology for each separate application.

Disparate clinical application functionality will not be lumped together indiscriminately in a single GUI composite application. These applications will not become grab-bags or catch-alls for unrelated application modules. Each composite application will be as focused on a particular goal as any standalone application would be. Functionality will be included as part of a composite application only when it is part of a greater metaphor the application is implementing (e.g., the CPRS patient chart). For example, the current Primary Care Management Module is not part of the patient chart metaphor, and therefore does not belong in a composite application implementing the patient chart.

The alternative to building a GUI composite application framework to manage composite applications such as CPRS — and a possible composite bedside point-of-care composite application — is to either:

· Provide each slice of functionality as separate, unlinked applications

· Provide each slice of functionality as CCOW-dependent, linked applications

· Have a single team build and maintain a massive GUI front end to manage the interface to multiple back-end applications

· Migrate the GUI applications to a Web front end

Note, for example, that while GUI Vitals/Measurements and GUI Clinical Procedures are currently being written as standalone GUI applications, they would have been written as components running as part of a CPRS composite application instead, if that capability were available today.

The need for a unified GUI front end for bedside applications is just emerging (the need for a unified GUI front end to the patient chart has been proven by CPRS.) BCMA is the first VISTA clinical application specifically designed for use on mobile, wireless workstations, optimized for bedside point-of-care use. It is driving the creation of a new wireless infrastructure at VA facilities; now that this is being put in place, a proliferation of new bedside applications is expected, including bedside Blood Transfusion Check, bedside GUI Vitals (optimized for nursing rounds) and bedside Dietetics (meal verifications).

4.3.2 ITA Support

The ITA does not take a position on componentizing (on the client) specific applications to run in a composite application framework. It does recommend componentization in general:

A component-based architecture will allow for significant flexibility in application implementation and adaptation. Through standard interfaces, components will comprise the building-blocks supporting the entire organization as an application infrastructure fabric. Ironically, these smaller discrete components prove to be an enabler of big picture and systems thinking, addressing portability across heterogeneous platforms through a shared technological infrastructure.

Application encapsulation will be achieved both horizontally and vertically. Future applications will be purchased, or even rented, and developed based upon the extent they are able to support the integration of components.

When applied within systems integration efforts, this approach allows for marketplace competition based upon effectiveness. It will also minimize, or eliminate altogether, the risk of being limited to a particular vendor’s product line. Concurrent development activities can occur and interoperate without the need for coordinated specialized interface or heroic delivery measures.

The vision for a GUI composite application framework is supported by the Migration Analysis for VISTA. It projects a development environment on the client that supports componentized, run-time assembly of an integrated, large clinical application from smaller components:

The [future] environment will allow developers to add new features to a workstation-based application without the need to reprogram the base application (i.e., equivalent to adding a new option to a menu).

4.3.3 Recommendations

Composite applications — those implementing an application-spanning metaphor, such as the patient chart, or bedside point-of-care functions — will be built as components assembled at run-time in a GUI composite application framework. For other applications, however, it is perfectly acceptable to build them as standalone applications (although if the standalone application is patient-centric, it should be linked into an overall coordinated patient context using CCOW; for more information, see "Context Management" elsewhere in this section).

A GUI composite application framework, optimized for CPRS clinical functionality, will be constructed. CPRS will be re-architected to run in the framework. The objectives of the framework are to provide:

· Greater extensibility, such as site-customized tabs allowing the addition of site-specific or VISN-specific functionality to those tabs

· The ability for clinical functionality to be developed, maintained and deployed by separate development teams working on separate timelines, based on run-time linking of application functionality

· The ability to integrate COTS functionality (e.g., commercial note writer applications) with CPRS

Developers will build clinical GUI functionality as to run in the GUI CPRS composite application framework under the following circumstances:

· The clinical functionality is part of the patient chart metaphor

· The clinical functionality requires interface features than cannot be implemented with a Web front end (e.g., controls such as sliders that are not easily supported in HTML)

4.3.4 Bottom Line

Remaking VISTA's current integrated GUI CPRS client application into a set of components running in a composite application framework will provide greater adaptability and flexibility, and will encourage independent, parallel development of GUI clinical functionality by multiple teams.

4.3.5 How Do We Get There?

1.
Build a GUI Composite Application Framework. A framework will be created that can be used to integrate, at run-time, separately developed components in a single composite application. Standards and development guides for writing components for the framework will need to be created and promulgated.

2.
Transform CPRS. CPRS needs to transition from a monolithic, pre-compiled application to a set of run-time components running in the GUI composite application framework. This is not a minor undertaking. The CPRS team will need either additional resources, or some relief from responding to enhancement requests, in order to componentize CPRS.

3.
Transform GUI Vitals and Clinical Procedures. These applications, as appropriate, will be transformed into run-time components that will run in an instance of the GUI composite application framework — the CPRS composite application, the BCMA/bedside composite application, and/or both.

4.
Modify RPC Broker (or Successor Technology). In order to share a single RPC Broker connection, the GUI composite application must establish an RPC Broker application context. Some modifications to the RPC Broker's "application context" scheme are needed to support multiple component contexts when the only active application context is that of the GUI composite application framework. Note: Application contexts are used by the RPC Broker to establish security over remote procedure calls (RPCs).

4.3.6 Critical Issues Targeted

Composite GUI Applications. Creating GUI composite application frameworks for CPRS and bedside functionality will enable true integration of application components developed independently into single, unified applications, easily accessible by the clinician, and synchronized on the currently loaded patient as well.

Extensibility. Re-architecting the VISTA GUI patient chart (CPRS) as a GUI composite application will enable the same (or higher) degree of local customization for GUI clinical functionality as sites have been able to take advantage of in Kernel's character-based, M-based Menu Manager framework. The result will be applications that are more extensible, at both the national and local levels. Nationally, parallel development of components by multiple teams will be possible. At the local level, development of individual components can be pioneered by VISNs and sites, and integrated into the national composite application as a seamless whole for the clinician end-user.

4.4 Web Composite Application Framework

4.4.1 [image: image33.png]

What Is It?

A Web-based composite application framework will be built. One of the first applications to utilize that framework will be an integrated, Web-based "CPRS Lite", to replace the List Manager version of CPRS (slated for retirement in January 2001). The Web provides an ideal technology to implement a composite application framework:

Because the communication between the client (Web browser) and the server is page based, it is easy to add components or functions through the addition or modification of individual pages. Simple as this sounds, careful planning is still required. The Web infrastructure is primarily geared toward controlling the user interface, and the back-end system must still support the desired functionality.

Through careful planning, the first version of a Web-based "CPRS Lite" will be built using a modular, composite application framework. This framework will put in place a structure, similar to that of the componentized GUI composite application framework, that will enable extensibility of the overall functionality based on the run-time assembly of Web components, supplied by diverse development teams working on different timelines. Web-based "tab-sheets" similar to the current CPRS tab-sheets will be able to be added dynamically, at run-time, to the Web composite application framework so that functionality for those tab-sheets can be developed in a distributed fashion, both at the OI and VISN levels.

The underlying Web Services infrastructure (described earlier in the Web Services section) will provide both web connectivity, and the web application framework in which to build VISTA-based Web applications.

A Kernel Option-file based mechanism should be considered for orchestrating access to Web applications, allowing site managers to control access to Web applications through a familiar mechanism, and allowing sign-on audits and other mechanisms to provide the same degree of control and accountability, to be managed using the mechanisms provided by Kernel.

Note that Web-based interfaces for clinical applications have not yet been implemented in VISTA. However, the use of Web interfaces for commercial applications on the Internet, and the interest of commercial HIS vendors in Web interfaces, bodes well for the Web presentation modality.

4.4.2 ITA Support

The "IT Plan" section of the ITA states:

A Web browser will be the primary delivery vehicle for information content presentation/display. Web browsers provide a consistent display mechanism to which end-users are already accustomed. A Web browser also provides a level of independence between platforms, and isolates applications from display concerns on the myriad of devices and platforms available. Further, this browser-based approach minimizes hardware requirements from the client-side platform by placing the processing burden on the server. This is consistent with the application infrastructure that has been chosen.

As such, web-based composite application frameworks will play a key role in VISTA's client application architecture.

The Migration Analysis for VISTA states:

Major advances are being made in Web-based technologies to support information sharing. These technologies have the potential to support the secure, reliable and efficient sharing of health care information.

4.4.3 Recommendations

The framework for the integrated "CPRS Lite" Web application will provide:

· Web-capable patient chart metaphor

· An organizing tab (or similar) system to structure the Web-based patient chart

· The ability to add tabs at run-time for additional functionality, as well as further organize the chart at run-time

· CCOW V. 1.2-compatible capability that can synchronize the entire Web-based patient chart with external applications on the workstation, based on workstation context changes

This will enable functionality modules to be added by different development teams, on different schedules, and will facilitate local development.

All participants in the Web composite application will, for example, synchronize on the currently loaded patient as applicable in a Web context, and change whenever the currently loaded patient changes.

Developers will build integrated Web-based clinical applications for clinical functionality under the following circumstances:

· The clinical functionality is part of a greater metaphor, such as the VISTA patient chart

· The clinical functionality does not require an interface with more complexity than can be implemented with a Web front end

· (optional) Remote access (i.e., non-VA providers, other non-VA end-users) is needed

· (optional) Absolute lowest TCO is an overriding consideration

4.4.4 Bottom Line

The VHA Architects suggest undertaking a "Web-Accessible Patient Record" prototype project to assess the suitability of Web technologies for VISTA clinical applications. Building an integrated clinical Web-based "CPRS Lite" provides just such an opportunity. Using a modular structure for the Web-based "CPRS Lite" will enable parallel clinical development and local extensibility.

4.4.5 How Do We Get There?

1.
Build a Web-based Clinical Composite Application Framework. Build a Web-based composite application framework, similar in concept to the GUI composite application framework, supporting modular implementation of Web-based clinical functionality for a Web-based "CPRS Lite".

2.
Provide Web services. Put in place Web services sufficient to support robust Web-based clinical development. IIS will form the foundation of these Web Services. The VCIOC and NVS will need to be involved in implementing both IIS (which will run on its own NT box) and a Web services solution at all VISTA facilities, as pre-requisites for substantial Web-based clinical development.

3.
Convert Clinical Business Logic to New Business Application Layer. Move all business logic not currently on the M server out of clinical client GUI software, and place it on the server in the new business application layer technology implemented by the Caché Object Migration: Common Object Services (COMCOS) project. This will allow Web-based clinical applications to use the same business logic as GUI clinical applications.

4.
Consider Building Option-based Menu System for Web Applications. This will allow site managers to control access to Web applications through a familiar mechanism -- the Kernel Option file. Access will be based on a persistent User object maintaining state, created after a Web-based logon.

5.
Leverage Health eVet Project. The Health eVet project is exploring the feasibility of providing the veteran with an electronic copy of their electronic health record in a secure and private manner. It may be possible to leverage knowledge gained from this project for the development of mainstream VISTA clinical applications as well.
4.4.6 Critical Issues Targeted

Lower TCO. Creating a Web-based "CPRS Lite" is a lower-TCO alternative to GUI CPRS that nonetheless runs in a modern (albeit Web) interface.

Composite GUI Applications. Creating composite application frameworks for both the GUI and Web-based versions of CPRS will enable true integration of components developed independently into a single, unified patient chart metaphor. Creating the framework will also provide the groundwork for any future Web-based composite applications using a metaphor other than the patient chart.

Extensibility. Implementing a Web-based "CPRS Lite" as a Web-based composite application will allow sites to add local functionality to the Web-based application suite in a modular fashion, without re-working the Web application code. Instead, local functionality will be able to be "snapped in" to the application.

Web Strategy. Creating a framework for a Web-based "CPRS Lite" will spur the development of significant, Web-based clinical functionality in VISTA.

4.5 Context Management

4.5.1 [image: image34.png]

What Is It?

Context management is the mechanism to synchronize the functioning of multiple, separate windowed applications on a GUI desktop. It is a response to some of the unforeseen problems posed by the transition from character-based applications to GUI, which for the first time allowed multiple client clinical applications to run simultaneously in different windows.

In 1999, HL7 adopted CCOW as the ANSI standard for context management on the client. The standard provides for the following behavior among GUI clinical applications (even from different vendors):

... Applications automatically and cooperatively change their state whenever the user sets a new value for one or more of these subjects. Three standard link subjects are defined as core to the CMA [Context Management Architecture], and are therefore introduced [here]:

 Patient, which enables the user to select the patient of interest once from any application as the means to automatically "tune" all of the applications to the selected patient.

 User, which enables the user to securely logon once to any application as the means to automatically "tune" all of the applications to the user.

 Encounter, which enables the user to select a patient encounter of interest from any application as the means to automatically "tune" all of the applications to the selected encounter.

In addition, organizations can define custom subjects and thereby implement custom links between applications that understand these subjects. The basis for custom subjects is also established....

Context management solves the following problems at the clinical point-of-use:

· Keeping different clinical application windows synchronized on the same patient

· Reducing the time it takes for clinicians to access clinical data in multiple application windows

· Integrating clinical applications on the desktop from disparate application vendors

Implementers of CCOW clinical context switching in the commercial space have found that end-users perceive separate interfaces, from different vendors, as modules of the same package when linked with clinical context switching:

Health Level Seven's CCOW standard for visual integration has set a new agenda for the health care industry that is changing the way health care systems work together. With CCOW, applications are able to work together in ways that enable them to behave like a single system from the caregiver's perspective. Instead of spending precious time operating computers, caregivers are able to make the best possible decisions from the best available information.

Functional Comparison: CCOW vs. VISTA Pre-CCOW Context Switching

	VISTA Pre-CCOW
	CCOW

	Applications obtain the current CPRS context a) after a context change is made, or b) when launched from the CPRS Tools menu
	Newly launched applications join the existing context (without prompting the user for user or patient)

	Context changes cannot be negotiated, even if another application can't change its context
	Context changes are conditional and negotiated; an application in the context may have unsaved patient data, for example, which it needs to give the user an opportunity to save before it can change context

	Only CPRS triggers context changes
	Any application can trigger a context change

	Supports Patient, TIU, Radiology Report and "CPRS closing" context subjects
	Supports Patient, User, Encounter and Custom context subjects

	Does not synchronize user context
	Synchronizes user context (enabling a form of single signon)

	Does not use mapping agent to resolve context identifiers
	Use optional mapping agents to resolve context identifiers (e.g., patient DUZ) across vendor systems

	Cannot readily integrate COTS applications
	Integrates CCOW-compliant COTS applications

	Does not support Web applications
	Integrates Web applications (CCOW v. 1.2, pending HL7 ballot approval)

VISNs and VAMCs are working to integrate COTS clinical point-of-use software with VISTA; facilities such as San Francisco VAMC, Palo Alto VAMC and Dallas VAMC are integrating a variety of COTS systems, including ICU, CCU and operating room applications, with VISTA. Creating a CCOW-enabled VISTA will provide an environment that will readily support the desktop integration of CCOW-compliant COTS applications by design.

4.5.2 ITA Support

The "IT Plan" section of the ITA states:

Leverage the CCOW standard. The HL7 Clinical Context Object Workgroup’s (CCOW) Clinical Context Switching standard will be leveraged to support visual integration of a consistent context on the workstation across applications. As the CCOW standard matures to address non-visual integration, it will be positioned to provide for context management and coordination for information retrieval as well. This will allow for the creation of a contextual “workspace” around which multiple coordinated activities will occur. CCOW will provide that coordination.

The Migration Analysis for VISTA states:

VISTA will use the emerging HL7 standard [CCOW] for clinical context. This will be adopted as the standard finalizes definitions. The adoption is expected to be gradual; Clinical Context Object Workgroup (CCOW) is the projected standard. Use of NT messaging will continue for remaining context. The CCOW standard is expected to offer a method similar to Z-segments used in HL7 messaging; that model will be used for clinical context not yet defined by the standard. Context for non-clinical areas (e.g., financial) may be defined via a Z-segment method or other appropriate standard. Research is needed in this area to determine a model to employ.

4.5.3 Recommendations

All standalone VISTA patient-centric clinical applications will use the CCOW standard for context management. At a minimum, applications need to fully support the CCOW patient context (joining an existing context, and switching to a new context). For backwards compatibility, all standalone VISTA patient-centric clinical applications will support the CPRS pre-CCOW mechanism for responding to CPRS context changes. This means that VISTA applications will be CCOW-aware, but not CCOW-dependent.

Infrastructure needed to support CCOW includes a CCOW-compliant context manager, patient mapping agent, user mapping agent and a passcode database for the user mapping agent.

CCOW user switching will not be supported, initially, in VISTA, however. User logon and logout will be controlled by NT logon and logoff. The proposed ESSO single signon mechanism will most likely be adopted by VHA. ESSO will be modified (or a standalone application created) to set a CCOW-compliant user context based on the NT user "context" established by ESSO. This will allow enable signon for CCOW-compliant COTS applications if VHA implements a CCOW user mapping agent. Mechanisms for user switching to allow things like order counter-signing have been requested by clinical users, however, so the concept of CCOW user switching will not be fully abandoned without further investigation.

4.5.4 Bottom Line

Fully implementing the new HL7 ANSI CCOW standard for clinical context switching will make an open VISTA clinical desktop that is ready to integrate COTS CCOW-compliant clinical applications. A less complete CCOW implementation (leaving out patient and user mapping agents) will still provide robust mechanism to synchronize VISTA applications (and COTS CCOW-compliant applications using VISTA's patient and/or user identifiers) running in separate windows.

4.5.5 How Do We Get There?

1.
Convert Clinical Applications to Support CCOW. Each CCOW application participant (CPRS, VISTA Imaging, etc.) will be modified to convert from their current pre-CCOW mechanisms (patient selected, TIU note selected and radiology report selected) to CCOW mechanisms (patient context, custom subject context). This is a non-trivial task, although there is a COTS Software Development Kit (SDK) that can be procured to assist in this effort. Note that CCOW contexts can be implemented independently, e.g., patient context can be implemented in applications independently of custom contexts.

2.
Modify ESSO to support CCOW User Context. ESSO uses an NT-based user "context" to automatically sign on users to VISTA applications. An extension of this functionality will leverage the NT logon to establish a CCOW-compliant user context so that CCOW-based single-signon could be enabled for COTS applications as well. In addition, the user mapping database that ESSO uses to map NT usernames to VISTA usernames could be extended to server the role of a CCOW user mapping agent, which associated COTS system usernames to the NT logon (as ESSO maps VISTA system usernames to the NT logon).
3.
(optional) Build Patient Mapping Agent Functionality. An optional CCOW component is a context mapping agent, which maps context subjects on one system to context subjects on another system. 3M's commercial MPI product will provide a CCOW-compliant mapping agent for patient contexts. VHA's MPI, however as a national level MPI, is probably unsuited to the mapping needs of local COTS systems. A patient mapping agent is needed only to support context switching with COTS, CCOW-compliant applications that do not themselves use the VISTA patient identifier. It is not needed for VISTA applications, as they are already synchronized on the same patient identifier.

4.
Initiate National Procurement of Context Managers. To get maximum cost benefits, VHA will pursue a national purchase of a CCOW context manager (one is commercially available from Sentillion, Inc.) or build one (a less desirable option).

5.
Investigate Emerging CCOW 1.2 Standard for Web Clients. Version 1.2 of the CCOW standard, which has not yet been released, contains a technology mapping of CCOW for Web-based applications. VISTA needs to research how to best implement CCOW for Web applications.

6.
Reconcile VHA User Signon and Patient Lookup Policies with CCOW Standard. With CCOW altering the way in which VISTA applications choose new patients and, possibly, authenticate their users, existing policies will be reviewed for any potential conflicts. In particular, switching to a sensitive patient via CCOW must be examined (to ensure that all VISTA business rules are followed, including sensitive patient warnings). In addition, allowing non-interactive logons to VISTA based on logons to a COTS system must be examined and, perhaps, restricted.

7.
Increase VA Participation in CCOW Standard Development. Traditionally, OI attendees at quarterly HL7 Working Group meetings have been HL7 messaging developers and VHA Architects. With the advent of the CCOW standard as part of HL7, CPRS, VISTA Imaging and other TS clinical development teams should also become involved with the HL7 CCOW standards process, and should send representatives to the quarterly HL7 Working Group meetings.

4.5.6 Critical Issues Targeted

Synchronizing Multiple Applications. The CCOW standard, by its nature, is designed as a way to synchronize multiple applications on the desktop. CCOW-enabling VISTA applications (and procuring and implementing a CCOW context manager) will create a synchronized VISTA clinical desktop.

Extensibility. A CCOW-enabled VISTA desktop will allow easier desktop integration of locally purchased COTS clinical applications, as well as easier integration of locally developed GUI applications.

Web Strategy. The next version of the CCOW standard, v. 1.2, is slated to provide a technology mapping of the CCOW standard for Web-based clinical applications. As such, implementing CCOW will allow Web-based clinical applications to be fully integrated with GUI VISTA clinical applications on the desktop.

4.6 Kernel Components

4.6.1 [image: image35.png]

What Is It?

As GUI workstations replace terminals as the dominant VISTA clinical user interface, character-based Kernel utilities are slowly becoming less relevant to clinicians. Increasingly, clinicians log on to the character-based VISTA system only to read email, process alerts, and request leave.

However, Kernel's provision of services has not caught up with this reality. Services for alerts, printing, task management, user's toolbox, and other Kernel are not available in the Web and GUI environment, both for end-users, and also as services developers can leverage in their Web and GUI applications.

Once alerts functionality and other Kernel services are provided on the workstation, however, the only reason clinicians may have to log in may be to read email or request leave. Otherwise, they may never have a need to open a character-based telnet session.

4.6.2 ITA Support

The ITA recommends componentization in general:

A component-based architecture will allow for significant flexibility in application implementation and adaptation. Through standard interfaces, components will comprise the building-blocks supporting the entire organization as an application infrastructure fabric. Ironically, these smaller discrete components prove to be an enabler of big picture and systems thinking, addressing portability across heterogeneous platforms through a shared technological infrastructure.

4.6.3 Recommendations

Needed Kernel functionality will be provided as components in VISTA's business application layer. This will allow both GUI and Web front ends to be provided, as needed. This will also allow these components to be accessed as application services.

For GUI-based VISTA client applications, interfaces to Kernel functions will be provided via Dynamic Link Library (DLL) wrappers. This will allow an application to call the Kernel interface without having to compile the Kernel functionality itself into its own executable. This will also provide language-independent implementations of Kernel functionality (similar to the DLL provided by the RPC Broker), allowing access from any Windows development platform.

For Web-based VISTA applications, initial Kernel support (i.e., signon and device selection) will be provided. In addition, as rapidly as the use of Web technology in VISTA allows, Web-based front ends for the remaining Kernel components will be provided.

4.6.4 Bottom Line

Providing re-usable, modular Kernel components and suitable GUI and Web front ends for those components will result in a better user clinician user experience, and free application developers to concentrate more of their efforts on vertical application issues.

4.6.5 How Do We Get There?

1.
Build GUI and Web Alert Processing Modules. Kernel alerts functionality must be transitioned to the GUI environment. A prototype of a GUI Caché Objects-based alert module prototype was created during the course of the Caché Strategic Evaluation Project (CSEP)
. The CSEP prototype provides a user interface for processing alerts, a mechanism for GUI applications to register which displayed alerts they can process, and a mechanism to invoke that processing. This prototype will be made into a production application, using either RPC Broker or successor technology.

2.
Build GUI and Web VISTA Printing/Tasking Module. M servers still must know where to direct print jobs to, in which case Kernel device selection is still a necessity on clients. This module will allow applications to easily select printers on the M server or on the GUI client to direct print jobs to, as needed. Tasking of jobs to M server printers will be supported through this module as well.

3.
Build GUI and Web User's Toolbox Module. The Kernel User Information module provided for character-based users will be transitioned to the GUI environment, so that users can access Display/Edit User Characteristics, Electronic Signature Code Edit, and tasked job monitoring and cancellation functionality, without invoking a character-based session.

4.
Build Web-Based Signon Module. Web development is less mature in VISTA than GUI development. To jump-start Web development efforts, a Web-based Signon module will be provided. This module will be implemented using a Web technology suited for modular applications that can easily invoke each other, maintain state and return parameters; Caché Server Pages is a strong candidate.

5.
Build Support in Kernel Option File for Web Options. Security for VISTA Web-based applications should be managed through the existing, familiar Kernel security mechanisms (until such time as those mechanisms are managed in a different environment). VISTA Web applications will be invoked through Kernel's Option file-based security, as options.

6.
Build Server Date/Time Module. Client applications need an approved method through which they can obtain the server's current date/time.

7.
Build "Get Authorized Security Keys" Module. Client applications need an approved method to determine which security keys the current user holds.

8.
Build Electronic Signature Code Module. Client applications need an approved method to interface with Kernel Electronic Signature Code functionality.

9.
Build PKI-Based Electronic Signature Code Module. Current DEA regulations require paper sign-off of orders for controlled substances. The DEA has proposed a pilot with VA to use Public Key Infrastructure (PKI) to replace paper sign-offs. VA will move ahead with this pilot, which could ultimately serve as a pilot for a PKI-based successor for the existing VHA M-based Kernel electronic security code module, and may also lead the way to a PKI-based signon. In addition, v. 1.3 of the HL7 CCOW standard may also provide a framework for the use of digital certificates for digital signatures. Note: If smart cards are used for holding the user's private key, then any application generating a digital signature on behalf of a user must employ a Web-based or GUI-based front end. Character-based applications cannot access the key store on the workstation.

10.
Build Other Kernel Modules Identified by Caché Object Migration: Common Object Services (COMCOS) Project. Modules encapsulating additional, appropriate Kernel supervisor and user options will be built employing the business application layer deployed by the COMCOS project.

4.6.6 Critical Issues Targeted

Extensibility. Providing Kernel services on the GUI client desktop will prove as much a stimulus for local development as it will provide for national development, extending the domain of Kernel-based local development from the character-based environment into the GUI environment.

Client Services Gap. The work under Kernel will substantially meet the current client services gap for VISTA GUI client applications. It will provide a similar suite of services for GUI client users that has traditionally been available for character-based users. It will substantially reduce the number of character-based sessions required for clinicians to accomplish their work.

Web Strategy. Providing Web-based VISTA Kernel modules such as a signon module, task/print module, and alerts module will jump-start nascent VISTA Web application development efforts.

VISTA Web Portal

4.6.7 [image: image36.png]

What Is It?

The ITA defines an enterprise portal as follows:

Enterprise portals provide secure and unified, or aggregated, views of structured and unstructured information to an end-user using a browser. An enterprise portal integrates such internal applications as business intelligence, email, document management, and operational databases with external applications such as news feeds and customer/supplier Websites. Personalization and group collaboration capabilities are enhanced. Advanced technologies such as Web OLAP, Agents, GroupWare, workflow, intelligent search and indexing, PKI, transaction management, document distribution formats, and data/application integration are incorporated strategically to effectively implement an enterprise portal.

The VISTA Web Portal will begin as an aggregating platform for a variety of functions for VISTA Web users, including:

· Web-Based User Signon (possibly integrated with Windows NT signon)

· Access to VISTA Web-Based Applications (menus and launching)

· Site Announcements

· Site-Defined Functionality

· Kernel Functions (User Information, TaskMan Interface, etc.)

· MailMan "New Mail" Flags (and the ability to launch a Web-based MailMan viewer)

· Alerts Notification Flags (and the ability to launch Web-based alert processing modules)

· Online Help/documentation (possibly)

· Exchange Mail and Calendar functions (possibly)

· External Links

The VISTA Web Portal will be the familiar, useful place for the person to access VISTA Web-based applications each time the person turns on his or her PC.

Depending on the robustness of the underlying technology supporting the Web portal, it may be possible to provide a degree of customization of the portal at the site level and for end-users. One possible technology (of many) is Microsoft's Outlook-based implementation of portal technology, called a "Digital Dashboard":

A digital dashboard is like a nerve center that allows you to view information consolidated from various sources. Digital dashboards are customized to allow you to access personal files, e-mail, company databases, Web sites, and more—all in one place.

A digital dashboard consists of Web Parts, reusable components that can contain any kind of Web-based information. A Web Part can be a simple component that displays a user’s favorite Web site, or it can be a sophisticated component that integrates your existing systems with the analytical and collaborative tools in products such as Microsoft Office, Microsoft Exchange Server, and Microsoft SQL Server. By creating customized Web Parts, you can tailor a digital dashboard solution to meet the specific needs of your company.

Microsoft diagrams the aggregating functions of its Web portal technology in the following picture:

[image: image17.png]Client Server

il Synchr

e
T

l v <~ o

Back End Data

Source: Microsoft Corporation

While Digital Dashboards offer the compelling opportunity of integrating VISTA functionality with Exchange's mail and calendar functions, there are many Web portal technologies and strategies to consider as well. Whichever technology is chosen, the VISTA Web portal will serve the same unifying role for the Web-enabled VISTA that Kernel's Menu Manager has served for character-based clients.

4.6.8 ITA Support

The "IT Plan" section of the ITA states:

Information presentation will be provided through portals: windows on information content that bring together stakeholder-specified constraints with information content to ensure that the maximum value of the content can be attained.... The portal brings together a host of disparate components (technologies, information sources, and data itself) in a “virtual sandbox” as prescribed by the stakeholder. The key difference between this and traditional approaches is that the stakeholder has primary control of presentation and content, as opposed to those areas being relegated to the stakeholder by the application developer.

4.6.9 Recommendations

A VISTA Web Portal will serve as the gateway for accessing VISTA Web-based applications. be built that serves as a unifying platform for a set of VISTA user services on the client. These services, primarily Kernel services, are independent of any individual application. Many of the services will be needed by clinical and non-clinical users alike.

4.6.10 Bottom Line

In the character-based interface to VISTA,, Menu Manager acted in a limited capacity as an aggregating platform. In addition to providing organized package menus, it also manages option-based security, option help, notification of alerts, notification of new mail, and the user-time out feature. The result was a unified experience for the end-user. The goal for the VISTA Web portal is to provide the same unified experience for Web-based VISTA users.

4.6.11 How Do We Get There?

1.
Create VISTA Web Portal. This application will organize the suite of VISTA applications and functionality that need to be launched on a GUI workstation. Select the appropriate portal technologies/infrastructure, and provide the needed VISTA-specific components and infrastructure to tailor the portal for VISTA use.

4.6.12 Critical Issues Targeted

Extensibility. By providing a platform on the client to organize and launch VISTA Web-based applications. It will also provide the location to present cross-application and Kernel functionality (e.g., alerts), a location to aggregate national and site-specific resources, and (possibly) an integration point between VISTA and non-VISTA-based applications as (e.g., Exchange's Calendar functions).

Client Services Gap. The VISTA Web Portal will serve a similar function for GUI workstations as the Kernel provides for character-based users: a single organizing mechanism for non-application-specific ("Kernel") VISTA functionality such as menuing for Web applications, alerts, and (possibly) user signon.

4.7 Server Connection

4.7.1 [image: image37.png]

What Is It?

Server connections provide the mechanisms for clients to connect to servers, typically to execute remote procedures on the server. For GUI applications, some form of server connection is needed — currently, in VISTA, that connection is provided by the RPC Broker. As VISTA's business application layer changes, the method of server connection between its GUI clients, that business application layer and VISTA's back-end servers will also change.

Introducing a new business application layer to VISTA (the domain of the Caché Object Migration: Common Object Services [COMCOS] project) will inevitably affect the form of server connection used by VISTA GUI applications. With a new business application layer, using a successor business application layer technology, VISTA client/server applications will need to use a new successor technology for their client/server connections.

The Migration Analysis for VISTA states:

Client/server applications shall continue to access data in VISTA through the RPC Broker or successor technology. COM+ and/or CORBA will need to be supported so that client/server based COTS/GOTS products can be more readily used with VISTA.

One particular unmet requirement for VISTA server connections services is the capability to perform multiple, simultaneously executing asynchronous server calls, as well as synchronous server calls. Currently, the RPC Broker supports synchronous RPC calls only: When a call is made to execute an RPC on the server, the client application waits until the RPC on the server completes and returns its results, before the client application can move on (this is called a "blocking" call.) Asynchronous server connections will allow a VISTA client application to request execution of an RPC (or its equivalent using successor technology), move on, and then have the server notify the client when the server call completes. This will allow the ability for client applications to execute more complex (and in some cases parallel) calls on the server. The current workaround for VISTA clinical applications is for applications to make a synchronous RPC call, task off a server job from that call, and have the server job store its output on the server in ^XTMP. Then, the client application uses a timer to periodically execute an RPC to poll ^XMTP when the results are completed by the server, the client then can retrieve the results using the polling RPC.

The capability to support asynchronous calls is supported in Microsoft's COM+ call model, its proposed SOAP (Simple Object Access Protocol) model, as well as in CORBA's call model. Some investigation and prototyping needs to be performed to determine whether either of these commercial technologies can be leveraged for asynchronous connections to VISTA's business application layer.

4.7.2 ITA Support

For communications between client and server, the ITA specifies the use of the RPC Broker as the standard, with a qualification that XML is an emerging standard for client/server communication as well:

The RPC Broker currently provides a portability layer between the underlying operating system and application code. Use of the RPC Broker enables the entire VISTA system, and other VHA applications, to be portable among different computers, operating systems, and M implementations. The concepts of portals and web-enabled applications are becoming more important. As a result, XML is an emerging standard in this area that may take on greater importance for client/server communication.

4.7.3 Recommendations

The RPC Broker is VISTA's current server connection service, to its current "business application layer" — RPC calls. However, part of upgrading VISTA to an object-based, much more comprehensive business application layer will likely include introducing a successor (or successors) to the RPC Broker. To the extent possible, that successor technology will leverage COTS capabilities, depending on the type of business application layer being implemented. Any native connection capabilities provided by the chosen business application layer(s) will be investigated as candidates for a successor technology, as well as the connection capabilities provided by COM+, the XML-based Simple Object Access Protocol (SOAP) and CORBA. In addition, these services will provide enhanced capabilities to client applications, including both synchronous and asynchronous server calls.

4.7.4 Bottom Line

The technology that provides server connections for VISTA GUI client applications is closely related to the VISTA's business application layer technology. As VISTA's business application layer technology is upgraded, VISTA GUI client applications will also need to be modified to use new, upgraded server connection technology.

4.7.5 How Do We Get There?

1.
Proceed with the Caché Object Migration: Common Object Services (COMCOS) Project. TS R&D work in the Caché Strategic Evaluation Project (CSEP) suggests that implementing a new type of business application layer is a desirable direction to move in. Part of the COMCOS project will also address how to provide server connections — the connectivity between GUI client/server applications and the new business application layer. The COMCOS project will begin developing the core in-house infrastructure and tools needed to implement the new business application layer, including server connections.

2.
Investigate COM+ and CORBA server connectivity. A pilot project will investigate whether it is practical, in a VISTA context, to use the asynchronous (and synchronous) capabilities of COM+ and/or CORBA to provide client connectivity to VISTA's business application layer.

4.7.6 Critical Issues Targeted

Lower TCO. Moving to an architecture that supports a separate business application layer supports a VISTA Web strategy, which as a presentation layer provides an inherently low TCO. Providing server connection capabilities is a necessary step to support that strategy.
Extensibility. Placing VISTA business logic in a separate business application layer makes that logic more accessible for local development to re-use in new ways, with new or enhanced user interfaces specialized to local needs. The business logic itself will be more easily extensible for local needs as well, by virtue of being unencumbered with data access and interface logic. Providing server connection capabilities is a necessary step to support that strategy.

4.8 Online Help

4.8.1 [image: image38.png]

What Is It?

One of the major problems with VISTA documentation has been getting that documentation into the hands of end users. It is expensive to print large user manuals. Functionality is frequently updated, making it hard to keep those large printed manuals up-to-date. Keeping a comprehensive set of user manuals available at each work area involves a significant expense, and requires many feet of shelf-space. Keeping that set of manuals up-to-date with all current software changes has proven to be an impractical task. And print documentation delivery is not well-suited for distributed development efforts, in which the target for documentation is functionality provided in software components developed by different teams at different times, assembled into a unified software application only at run-time.

However, providing user manuals online, rather than in printed form, provides a means to:

· Lower TCO for sites

· Ensure full availability of documentation to end-users

· Ensure delivery of up-to-date user documentation to end-users

· Allow assembly of a modular manual from constituent pieces

GUI and Web applications provide a more robust environment for delivery of online help than does VISTA's traditional character-based environment. Embedding the heart of the user manual in the application software, as online help, ensures that the most recent version of user documentation is at the fingertips of the end-user.

For GUI applications, there are two primary choices for online documentation delivery: Windows Help (the format of documentation traditionally distributed with Windows applications) and its successor technology, HTML Help (the format used for online help in Microsoft Office 2000).

For componentized application delivery, such as in a GUI or Web-based composite application framework, one of the considerations is the modularization of the help system. Just as the software needs to be assembled at run-time from its constituent pieces (components), the help system for that software also needs to be assembled at run-time from its constituent pieces. A modular help system for composite applications will have the following properties:

· A unified table of contents will provide a single view of the constituent help files

· A unified index will provide lookup of all topics from constituent help files

· Context-sensitive help (for Windows GUI applications) will be enabled from the composite application, with the referenced help being sourced in constituent help files

Meeting these requirements will require a framework, and a set of standards and conventions, for the design, distribution and implementation of online help, for both the GUI and Web composite application frameworks. This framework will need to be similar to, for example, the framework for online help in the Delphi environment, which also provides a framework, and standards and conventions, for assembling a unified help system from constituent help files provided by both Delphi and third-party component vendors.

For all online help, whether part of a composite application framework or not, easy printing will be supported for end-users who wish to print portions of a manual. In the Windows Help and HTML Help environments, this is supported with the appropriate use of table of contents files (.CNT files for Windows Help, and .HHC files for HTML Help). Both of these table-of-contents systems allow a user to print all topics contained within a table of contents folder. Help systems will be designed so that all topics a user may wish to print are referenced in the table of contents.

Finally, the use of "active" documentation, such as wizards, will be considered as an additional avenue of online help delivery. Incorporating the user manual into the software process itself can be a particularly effective way of guiding users through complex processes. Consideration will be given to creating wizards to guide users through certain complex tasks in clinical software, putting the instructions right in the process itself being used.

4.8.2 ITA Support

The ITA does not make any recommendations or specify standards for the presentation of software documentation to users. The ITA does strongly endorse the use of the Web for software applications. Therefore, a logical extension of that support is to provide software documentation using the same application medium: Web-based (for Web applications) and Windows Help (for Windows GUI-based applications).

4.8.3 Recommendations

A framework, and a set of standards and conventions, must be created to support the modular distribution of online help, for both the GUI and Web composite application environments. Standards and conventions will be promulgated through the GUI and Web SAC documents. User manuals will be distributed in mainly in Windows Help and/or HTML Help formats for GUI applications. User manuals will be distributed mainly in Web format for Web-based applications. Print-format user manuals (e.g., excluding Installation Guides) will be considered mainly for short user "getting started" guides.

4.8.4 Bottom Line

Serious problems are impacting the ability of OI and the VISNs to distribute traditional, print-format documentation to end-users. The advent of GUI and Web applications as the primary VISTA interface will allow OI and the VISNs to leverage the capabilities of Windows and the Web for online documentation delivery. The time cannot come too soon for VISTA to shift delivery of user manuals from print format to online format, embedded in the delivery of the software itself.

4.8.5 How Do We Get There?

1.
Build GUI Composite Application Help Framework. Create a framework and a set of standards and conventions to support modular distribution and integration of help files in the GUI composite applications.

2.
Build Web Composite Application Help Framework. Create a framework and a set of standards and conventions to support modular distribution and integration of help files in the Web-based composite applications.

4.8.6 Critical Issues Targeted

Lower TCO. Reproducing and distributing up-to-date, printed documentation to end users results in a higher cost of ownership for sites. Providing that information online with the application software, in an easy-to-use format, results in a lower TCO for sites.

Composite GUI Applications. Part of the framework for incorporating diverse components into a single application (GUI or Web) is integrating the help files for those components. The combined help topics for all components will be viewable from a single table of contents, and context-sensitive help will be accommodated in GUI composite applications for all GUI components.

Extensibility. The ability to add in separately developed help files into a GUI or Web-based composite application's online help is one part of achieving easy extensibility.

Installation Services

4.8.7 [image: image39.png]

What Is It?

Lowering the TCO of VISTA client applications is a major OI goal. If VHA is to deploy a significant number of individual, componentized clinical applications (as opposed to large, monolithic clinical applications) the burden of site deployment must be lowered. VHA's client environment is Microsoft Windows, so efforts to lower TCO revolve around improving the installation mechanism for Windows GUI applications.

OI, VISNs and VHA sites have already come up with a number of strategies to lower the TCO of GUI client applications such as VISTA software (e.g., CPRS) as well as Microsoft Office, terminal emulators and anti-virus software:

· Manual installation

· Cloning (i.e., binary hard drive imaging)

· Centrally mounted application drive

· Microsoft Systems Management Server (SMS)

· Microsoft Windows Terminal Server (WTS)

· CPRSUpdate automatic installation utility for CPRS executable

One crucial requirement distinguishing some of these approaches from others is the capability to work in a "Lockdown" environment — an environment in which people's abilities to write to the file system and the registry are restricted (requiring administrator access to install software).

The following Zero Administration for Windows (ZAW) initiatives to lower the TCO of client installations are provided by Microsoft for the Windows client environment:

SMS: SMS is currently deployed, but not necessarily implemented, at all VA facilities. Because SMS is an enterprise tool, deployment and implementation have involved significant efforts, with associated planning, resources, contracting and funding commitments to be worked out. Implementation of SMS has support at the VCIOC level, with a consensus that SMS is the proper way for VHA to manage its Windows desktops. The National VISTA Support (NVS) Operations - National Administration Team (part of OI Customer Services) is proceeding with the SMS implementation. SMS will provide automated "push" software distribution, help desk capabilities (remote control of users' PCs), and national software and PC inventory and analysis functions. Estimated time for full implementation to all VISNs and Medical Centers is the end of the calendar year 2000. Within this time, all sites will have "discovered" all workstation and server clients, and hardware/software inventory will have been accomplished. Completion of this process is crucial to the capability of distributing VISTA software using SMS.

WTS: Windows Terminal Server provides a thin-client environment for Windows applications. With WTS, you install applications on the WTS system, and users connect from their workstations to the WTS system to run those applications. There is a much lower TCO for the sites (software applications are installed and maintained on the WTS systems only), with a trade-off of application speed to the end-user. Note that certain clinical applications may not be compatible with WTS, in particular, VISTA Imaging. The 1/10/00 VHA OCIO Flash Report states:

Sites planning to run VISTA Imaging should not use Thin Client workstations [for Imaging RAD workstations]. Users have found that the Thin Client workstations do not display the full set of colors that is required for FDA approval as well reduced resolution of gray scale and color images.

Windows Installer: Windows Installer resides on the client workstation. It provides the necessary intelligence on the client side, to manage application installation, configuration, and uninstalls. It is built into Windows 2000, and updates are available for Windows NT, 98 and 95. Major installation software vendors (InstallShield, Wise, et al) have released updated installation software products that support the Windows Installer service. It provides support for self-repairing applications, the ability to perform installations on secure systems, and full support for Windows 2000 IntelliMirror functionality. It supports patching (small updates), minor upgrades and major upgrades. It also supports self-repairing applications:

"The Windows Installer service provides much more than the capability to install applications. This technology also protects the integrity of the application against inadvertent mishaps with the local files. In this scenario, when the user attempted to open [Microsoft] Word, the Windows Installer service identifies that some essential files were missing. The missing files are immediately reinstalled from the network source specified to the Windows Installer when the application was first installed..."

IntelliMirror: Part of Windows 2000, IntelliMirror is a major TCO initiative. It uses policies to enable users' data, software and settings to follow the user from desktop to desktop in a distributed environment. When combined with Windows Installer and compatible applications, it enables "Just-in-time" installation for applications (both for small updates and complete installs), meaning that all versioning of client software is automatically synchronized based on centralized versioning provided by the site. Windows 2000 Active Directory is a key support component for IntelliMirror. IntelliMirror adds an important capability lacking in SMS: The ability to ensure that all clients upgrade to the new version of client software — without this capability, the server would in many situations need to be kept offline until SMS completes all of its "push" installations.

4.8.8 ITA Support

The ITA lists SMS v2 as the VHA-specified standard for system management services, as part of VHA's IT infrastructure:

VHA requires a specification for utility programs that will provide system and network administration functions. These administration functions include services such as system monitoring, user resource allocation, user access control, device configuration, file systems, job accounting, queues, system backup, and machine/platform profiles. Systems Management Server is designed to help systems administrators lower their management costs by helping them install and maintain operating systems and applications, discover system configurations, and perform helpdesk operations.

Windows 2000 capabilities in the area of installation services are not discussed in the 2000 ITA.

4.8.9 Recommendations

Client auto-update functionality is the single greatest unmet need for VISTA client applications. Addressing it will be the single greatest addition to lower the TCO of GUI client applications. Addressing it will also be a significant enabler for GUI application developers to decompose their client applications into modular component-sized pieces that can be independently developed, patched and distributed, rather than distributed in a single compiled executable.

Client auto-update functionality will be provided as an infrastructure service. In addition, this capability must work in a "Lockdown" environment — an environment in which people's abilities to write to the file system and the registry are restricted (requiring administrator access to install software).

Based on the principle of leveraging commercial technology, OI Customer Services (National VISTA Support) and OI Technical Services will complete implementation of SMS, and then begin work to support two additional, new ZAW initiatives:

· Microsoft IntelliMirror (provides client auto-update capabilities)

· Microsoft Active Directory and Group Policy (supports IntelliMirror and SMS)

IntelliMirror add support for an important capability lacking in SMS: client auto-updates of software. This will allow SMS to be used to update clients, with version synchronization with an updated server intact, without taking server software offline: in the case where a client accesses the updated server software before SMS has updated the client, it will then be auto-updated via IntelliMirror. Both IntelliMirror and SMS are compatible with a "Lockdown" environment.

OI will also provide explicit support in VISTA software for existing VCIOC-supported Microsoft ZAW initiatives (SMS and WTS). OI will do this by ensuring that its software is compatible with both SMS deployment, and with running in a WTS environment. VISTA developers can do this by following the guidelines in the Application Specification for Microsoft Windows 2000 for desktop applications to build GUI client applications.

Depending on the speed at which the suite of Microsoft ZAW initiatives — particularly IntelliMirror — can be implemented across the VHA enterprise, an additional self-developed infrastructure capability may be needed to prevent clashes between the versions of client and server VISTA software. If needed, a capability could be built into the RPC Broker (or successor technology) to silently test that the version of the client software will work with the version of the server software (and vice versa). In the case of a conflict, the RPC Broker (or successor technology) will prevent access and return a message so that the client can respond accordingly.

4.8.10 Bottom Line

Microsoft, in response to market pressures, has spent several years and untold developer hours creating a suite of tools to substantially lower the TCO of GUI client applications. By making full use of this technology in VISTA, we can substantially lower the TCO of VISTA.

4.8.11 How Do We Get There?

1.
Create VISTA GUI Windows Applications According to Microsoft Guidelines. VISTA developers will create applications to be compatible with Microsoft's ZAW initiatives. The best way to achieve this is to build applications that comply with Microsoft's Application Specification for Microsoft Windows 2000 for desktop applications. This guide details the technical requirements for applications to earn the "Certified for Microsoft Windows" logo. A major portion of satisfying these technical requirements involves compatibility with the ZAW initiatives including IntelliMirror, Windows Installer, WTS and SMS.

2.
Complete VISN SMS Implementation. With the support of the VCIOC, the NVS National Operations - Administration Team is working to implement one Microsoft Zero Administration for Windows (ZAW) initiative, SMS, across all VISNs and VHA facilities. Once implemented, they envision taking responsibility for such tasks as providing SMS package distribution scripts for VISTA and non-VISTA software.

3.
Begin VISN IntelliMirror Implementation as part of Windows 2000 Rollout. IntelliMirror adds an important capability lacking in SMS: client auto-updates of software. This will allow SMS to be used to update clients without taking server software offline: in the case where a client accesses the updated server software before SMS has updated the client, it will then be auto-updated via IntelliMirror. Adding this capability is dependent on completing the rollout of Windows 2000 in VHA. It is likely that NVS National Operations - Administration team will play a similar role with IntelliMirror as they are doing with SMS. The VCIOC will need to first decide to support Active Directory and IntelliMirror at the VISN/facility level.

4.
Modify the RPC Broker's IP Addressing to Support WTS. The RPC Broker needs to be modified to detect if it is running in a WTS environment, in which case it will use WTS APIs to obtain the appropriate IP address information for the connecting workstation, rather than returning the IP address of the WTS system. Alternatively, the RPC Broker client agent can be removed from the RPC Broker architecture (it is the client agent's "callback" feature that causes problems in the WTS environment).

5.
Build Version-Checking Capability into RPC Broker or Successor Technology. This will ensure, in the absence of IntelliMirror functionality, that inappropriate versions clients are not used to connect to server applications. The version-checking capability may be either site-configurable or developer-configurable, as appropriate.

4.8.12 Critical Issues Targeted

Lower TCO. Installation services primarily support the critical issue of lowering TCO for VISTA client clinical applications.

Composite GUI Applications. Client auto-update functionality will be a significant enabler for GUI application developers, allowing them to decompose client applications into modular component-sized pieces that can be independently developed, patched and distributed, rather than distributed in a single compiled executable.

S E C T I O N
5. Risk Mitigation

5.1 Run-Time Risks in a Composite Application Architecture

While the concept of componentizing a monolithic application such as the CPRS GUI is compelling from an architectural point of view (greater flexibility and adaptability), the realities in such an undertaking are not risk-free, particularly given the core status of CPRS in VISTA.

Assembling the interface and functionality of a complex clinical application such as CPRS at runtime may introduce as many problems as it does benefits. Areas of concern include:

· Server impact. Building an application from multiple components assembled at run-time means less performance optimization of the overall application.

· Loss of predictability. For example, version synchronization problems may exist between different components, resulting in bugs that are often difficult to diagnose.
· Loss of Accountability. Tracking software behavior may be compromised if the ability to create too many local modifications is "designed in" to the application.
· Encapsulation boundaries. It may be difficult to define clear separation between many of the different components of CPRS, especially if those boundaries are to be drawn based on server package boundaries.
· Loss of integration. Assembling application components at runtime may compromise the ability to tightly integrate those components. It is the integrated nature of CPRS, in the end, that makes it stand apart from the rest of the industry.
5.1.1 Mitigation

The value brought to the table by the current incarnation of CPRS and other VISTA GUI clinical applications will be analyzed and thoroughly understood, to ensure that value is not lost when the architecture is changed to a composite GUI application architecture.

To maintain accountability of software behavior, the degree of extensibility permitted will be somewhat restricted. If any aspect of an application interface can be changed, it becomes difficult for Customer Services to troubleshoot software, and for Technical Services to guarantee reliable, predictable software to the field. An application will be extensible in the same vein as Kernel's Menu Manager is extensible — it is possible to add additional functionality, but significant alterations to existing functionality are not permitted.

OI must ensure that any componentization of CPRS does not break the interconnectivity of the product (the key benefit of the CPRS approach for VISTA clinicians). In addition, all interactions between components will occur through abstracted COM interfaces, which allow run-time binding rather than compile-time binding. This will reduce the possibility of version conflicts between components.

A further analysis of the success of CPRS and other VISTA applications will be undertaken to ensure that re-architecting those applications retains the characteristics that have made them successful. In particular, CPRS will be decomposed to its natural components (based on the utility, atomicity and performance of those components), but no attempt will be made to decompose it any further.

As a final form of mitigation, it may be that the integration needs for composite applications can be met in other ways, such as the use of CCOW to "link" separate applications rather than force all application functionality into a single application.

5.2 Impact of Local Customization on VISTA Support

Currently, the teams supporting VISTA GUI clinical applications have some assurance that there is consistency in the client applications such as CPRS and VISTA Imaging in use at facilities. However, the old adage that when you've seen one VA facility's information systems, you've seen one VA facility's information systems, may now apply to frontline GUI clinical applications such as CPRS as well. Significant extensions and customizations to a CPRS running in a composite application framework may result in a application that looks and runs very differently at one site than it does at another. This may make troubleshooting and supporting such applications more difficult and subject to variability.

5.2.1 Mitigation

The composite application frameworks, both GUI and Web, must be very carefully designed to ensure robustness, even when locally customized and extended. Mechanisms supporting extensibility will ensure the integrity of the core application.

5.3 Server Performance

While server performance is not strictly a domain of the Clinical Application Architecture, it does affect GUI clinical applications. In particular, CPRS, as a comprehensive, multi-tabbed Windows application, makes significant demands on the server back end. It uses a number of background tasks at different times, in addition to its dedicated server job, so that the application (and clinician) isn't hung up in one place waiting for the server to return results. These jobs include tasks such as loading the cover sheet and clinical reminders, retrieving remote patient data, and the filing of PCE data. The CPRS GUI interface can potentially reflect and display many server back end results to the clinician, if the server back end can keep up.

Performing each of these jobs as tasks is a good thing for clinicians, but doing so does push the server performance envelope farther than it has been pushed in the past, by using multiple processes at different times, rather than a single process, to maintain the user interface. Building additional, integrated clinical functionality in CPRS, the primary VISTA clinical interface, is highly desirable. However, the server back end must keep pace.

5.3.1 Mitigation

OI Technical Services' VDSI Capacity Management Team has been studying the issues of server performance at CPRS sites for some time now. Their analysis reveals that workload on VISTA servers, from the spectrum of VISTA software packages, including CPRS, is increasing.

After analyzing the type of load being put on server systems, and where the performance bottlenecks lie, their analysis and advice to mitigate this is that VISNs and sites must continue to upgrade VISTA's server hardware platforms to keep pace with computing demands, which are growing at an average annual pace of 133%, as measured by VDSI Capacity Management
. National VISTA Support has been assisting sites with their hardware upgrades, and these upgrades (in particular, upgrading AlphaServer 1000As to AlphaServer ES40 systems) are addressing the current performance problems. Tuning, configuration and load balancing address the remainder of performance problems. On the horizon after the Alpha ES40s are the Alpha Wildfire systems; as long as VISNs and sites are able to upgrade their systems to meet growing computing demands, performance issues can largely be mitigated.

5.4 CCOW Industry Adoption Rate

With one of the potential benefits of CCOW being COTS desktop integration, OI risks losing this benefit if widespread industry adoption of the CCOW standard does not occur. VA's decision on whether to adopt the CCOW standard would be a minor, although not negligible, factor in determining the healthcare industry's rate of adoption of the standard.

Industry participants in the CCOW standards process, past and present, include:

· 3M Health Information Systems
· Agilent Technologies

· ClinEffect Systems
· Component Software International Inc.
· Digineer

· Duke University Health System
· HealthVision
· Hewlett-Packard
· HIE
· IDX
· Marquette Medical Systems
· Mayo Foundation
· MedicaLogic
· Mortara Instrument, Inc.
· Multum Information Services, Inc.
· NeoTool Development, LLC
· Oacis
· Oceania, Inc.
· OSF HealthCare System
· SMS

· Sentillion, Inc.

· Spacelabs Medical
· Sunquest Information Systems
· Syntheses Technologies, Inc.

· VHA Inc.
While there are many participants in the standards process, "the proof is in the pudding", particularly in the numbers of shipping CCOW-compliant clinical applications. The standard is still too new, however, for its track record to be proven.

5.4.1 Mitigation

To mitigate this risk, VA must increase its participation in standards activities, and engage in other activities to help to assess the market penetration of the CCOW standard.

5.5 CCOW Procurement and Vendor Dependence Issues

In order for VA to implement CCOW-based context management to mediate interactions between its clinical applications, certain CCOW infrastructure is required. Currently, only one vendor (Sentillion, Inc.) is a supplier for COTS CCOW infrastructure products. Sentillion, Inc. currently offers:

· Context Manager. This is key ingredient. A Context Manager is necessary for every workstation. Sentillion Inc.'s context manager is the only one commercially available.

· Software Development Kit. This is used by a developer to make an application CCOW-compliant, i.e., communicate with a CCOW-compliant Context Manager. The SDK includes a Compliance Testing Tool to simulate CCOW activity in order to test applications and an Observer application that allows developers to view CCOW activity.

· Context Administrator. Some actions must be taken to manage the CCOW environment. This is not a drop-and-forget system. The Context Administrator can perform various functions from a central location: configuring a context manager, defining and retrieving data logs, managing the CCOW participants on the clinical desktop, and so on.

· Context Server. This (as of yet unreleased) back end server software is envisioned by Sentillion, Inc. to provide various services needed to operate CCOW. Currently, it contains a passcode repository, which is accessed by the Context Manager for secure subjects. If Sentillion Inc.'s (also unreleased) User Mapping Agent were used to retrieve identifying information for user's of different applications, the Context Server hosts the necessary database. Future uses might include hosting of HIPPA audit data. Sentillion, Inc. recommends that the Context Server be installed on its own NT box (it will be shipped it that way.)

5.5.1 Mitigation

When re-designing VISTA applications for CCOW compliance, they can be re-designed to be either CCOW-dependent or CCOW-aware. Additional functionality such as patient lookups can be entirely removed from VISTA clinical applications, for example, if the presence of context management is assumed. If applications are made context-aware, on the other hand, they will still function even if context management is not implemented.

The safest way to mitigate the risk that CCOW infrastructure will be too expensive, or too dependent on a single vendor, is to make VISTA applications CCOW-aware, but not CCOW-dependent.

There is also the possibility of building CCOW infrastructure pieces in-house, but this is the least preferred option when COTS equivalent pieces are readily available. Building a Context Manager in-house, for example, is possible using the CCOW specification as the starting point. However, it would be a very large task, and one that would require revisiting as the CCOW standard changes.

5.6 Reconciling ESSO and CCOW

Enterprise Single Signon (ESSO) is a prototype developed by OI BEST to provide single-signon, based on NT username authentication (the only time you sign on is to NT). It applies to all VISTA users, but only for RPC Broker and character-based VISTA telnet sessions.

CCOW also provides, in effect, a single sign signon mechanism. The differences from ESSO are that a) it applies only to clinical VISTA users, and b) provides single sign-on for any CCOW-compliant GUI application, including COTS. ESSO, as defined at the current time, does not afford single signon capability for COTS systems.

5.6.1 Mitigation

The issue of NT-based authentication needs to be reconciled with the establishment of CCOW-compliant clinical user contexts in VISTA, which, at least within the parameters of the CCOW standard, can be performed without an NT logout/logon. The ability to switch user identity without an NT logout/logon has been requested by clinicians. On the other hand, some enterprise-level VISTA services, such as security authorization, may in the future be performed based on a user's NT identity, via LDAP directories such as Microsoft Active Directory. This would conflict with user switching if that switching did not reach the NT level.

There may be some middle ground for the two initiatives. If ESSO is modified to establish a CCOW context on the workstation, in addition to what it already does for VISTA, then ESSO's NT logon could be used as a single signon for COTS CCOW-compliant applications as well as for VISTA. ESSO's user mapping (it maps NT user accounts to VISTA user accounts) would be a logical place to store mappings to COTS users accounts as well — the role of the CCOW user mapping agent.

The best features of ESSO and CCOW, with development work, can be melded into a unified VISTA single signon initiative. Each has its own strengths, targeted problems and technical solutions. Combined, they will provide the best of both worlds, enabling single signon to NT, VISTA and COTS systems.

5.7 IntelliMirror and SMS Deployment Dependency

A componentized version of CPRS running in a composite application framework could cause a dramatic increase in the total cost of ownership (TCO), as compared to the current monolithic, single distributable version. New distribution headaches will include installing additional files on each system, as well as registering additional COM objects into each system’s registry. Installation of a separate product that ships with an older version of a component can overwrite a newer version, and if we use a distribution model that only uses the newest component version, the package designed to work with the older version may not function correctly.

Client auto-update functionality is the single greatest unmet need for VISTA client applications, and is the single greatest addition to lower the TCO of GUI client applications. In particular, a large number of discrete application components will need to be deployed and maintained on user workstations, in order to support the flexibility and adaptability demanded by the Clinical Application Architecture (GUI application components, and Kernel services deployed as DLLs). If the installation mechanisms (IntelliMirror and SMS) recommended in the Clinical Application Architecture cannot be fully deployed, the higher number of workstation components will result in a higher, not lower, TCO for VISNs and facilities.

5.7.1 Mitigation

The mitigation for this situation is implementation of Microsoft's Zero Administration for Windows (ZAW) initiatives in VISTA. In particular, implementation of Microsoft IntelliMirror and SMS are the keys to achieving low TCO.

SMS, currently being implemented by National VISTA Support (NVS) and the VISNs, allows new software to be pushed out to workstations. IntelliMirror, however, add support for an important capability lacking in SMS: client auto-updates of software. This will allow SMS to be used to update clients, with version synchronization with an updated server intact, without taking server software offline: in the case where a client accesses the updated server software before SMS has updated the client, it will then be auto-updated via IntelliMirror.

Mitigation: Based on the principle of leveraging commercial technology, OI Customer Services (National VISTA Support) and OI Technical Services should complete implementation of SMS, and then begin work to support two additional, new ZAW initiatives:

· Microsoft IntelliMirror (provides client auto-update capabilities)

· Microsoft Active Directory and Group Policy (supports IntelliMirror and SMS)

5.8 Impact of Web Applications on Facility Networks

Use of Web technology in a VISTA context is largely new. Some performance issues, therefore, have not been evaluated, in particular the issue of bandwidth (will Web applications consume more facility network bandwidth than the current GUI applications consume?)

5.8.1 Mitigation

OI Technical Service's Capacity Management will need to be involved to measure the effect of Web-based applications on site's networks and core systems. Web applications will be introduced incrementally to VISTA, with the first wave of applications being non-mission-critical ones (e.g., a Web-based "CPRS Lite"; the GUI version of CPRS is available if there are issues with the Web-based one). Capacity Management and National VISTA Support (NVS) will need to monitor the impact this new wave of applications has on facilities.

5.9 Conflicts with Other High Priority Projects

Each of the following projects is likely to have a major impact on Technical Services over the next few years in the clinical arena:

· Meeting Health Insurance Portability and Accountability Act (HIPAA) requirements. The scope of this effort will likely exceed that of VHA's Y2K work.

· Implementing an object-oriented business application layer — the domain of the Caché Object Migration: Common Object Services (COMCOS) project.

· Implementing a Clinical Data Repository and transitioning VISTA's storage of authoritative clinical data from VA FileMan files to the repository.

5.9.1 Mitigation

Technical Services must position its teams so that work on the services specified in the Clinical Application Architecture can proceed along a parallel track with the work needed for HIPAA, a clinical data repository, and the Caché Object Migration: Common Object Services (COMCOS) initiative, as well as other projects that the field has defined as mission-critical.

In particular, some relief may be needed in terms of implementing new CPRS functionality, so that OI can step back and re-architect CPRS for CCOW, a business application layer and a composite application framework.

5.10 Impact of Technology Changes on OI Staff

Any technology changes will have a major effect on OI, for VISTA developers and for National VISTA support (NVS). Significant technology changes recommended by the Clinical Application Architecture include:

· New business application layer technology

· New Web technology

· Componentization of clinical functionality

· Use of COM interfaces for communication between components and GUI composite application frameworks

· CCOW functionality for standalone GUI clinical applications

· CCOW (v. 1.2) functionality for standalone Web clinical applications

· Widespread use of GUI, rather than character-based, Kernel utilities

· SMS implementation

· IntelliMirror implementation

· Active Directory implementation

5.10.1 Mitigation

Each technology change above will require a strong commitment from OI and from the VISNs, to train OI developers, NVS, VISN and site staff in the new technologies.

S E C T I O N
6. 2001+ R&D Horizons

[image: image40.png]

Fully implementing the recommendations set forth in the VISTA Clinical Application Architecture will help VHA respond more quickly to changing business needs with the client portion of its IT systems.

Some additional recommendations fall into the category of technology that is either still maturing, or that has not been explored before in a VISTA context. However, the potential of these technologies to improve processes in VISTA makes them compelling to investigate.

OI needs to undertake a substantial research and development effort, in order to determine how to integrate these emerging technologies with VISTA. Serious prototyping is required so that a year from now, OI (through the combined efforts of BEST, TS and the VHA Architects) can demonstrate how these technologies will contribute, enhance, and move VISTA forward.

Note: The domain of the Clinical Application Architecture is the client side of clinical application development. As such, it does address issues for the business/application layer of clinical applications. Many technologies new to VISTA are of interest to in business/application layer development, such as CORBAMed, application messaging through interface engines, and the use of clinical data repositories to store a complete computerized patient record. The only technologies described here, however, are those likely to impact the client side of VISTA clinical application development.

6.1 HL7 Version 3 and Patient Record Architecture (PRA)

The VHA Architects recommend an analysis of the HL7 Patient Record Architecture (PRA) as one of their top 14 projects recommended for VISTA in the FY2000 ITA. As a standard for the XML-based exchange of clinical documents, the PRA has potential value to VHA as a means of standardizing information exchanges both within, and outside of, VHA.

The co-chair of the HL7 XML Special Interest Group (SIG) describes the PRA as follows:

In their seminal 1993 paper, "The Introduction of a New Document Processing Paradigm Into Health Care Computing, Drs. Lincoln and Essin with Robert Anderson and Willis Ware of the Rand Institution, proposed an approach to clinical records based on "document processing": "Here the notion of the document as the object to be stored and processed is in contradistinction to the common computing view in which data, records, and fields are the fundamental items. Electronic documents, properly enhanced with additional labels, can form the archive from which data can be extracted from various viewpoints for classic processing, providing greater flexibility to end-user applications and enhancing results." The PRA is such an approach that uses Extensible Markup Language (XML) as the "additional labels".

The use of XML in both the PRA and as a data interchange format for HL7 V. 3 itself lends the possibility of using industry standard tools (e.g., parsers and viewers) when working with HL7 messages and PRA documents. This may be particularly useful on the client side of clinical applications. The HL7 message for a lab result, for example, could be passed to the end-user directly, and formatted as a finished report by the use of style sheets. This increase in efficiency is a type of Straight-Through Processing (STP): without additional modification, the same system interface that generates a message for inter-system transport can also be used, without further processing, to generate the client interface.

This would enable the use of mainstream industry tools to manipulate HL7 messages, for the first time:

If the PRA Level One can provide a common XML model for the billion clinical documents transcribed each year, it will materially advance system interoperability. At the same time, a Level One document header and document structure allows experimentation and local implementation of the types of document semantics we expect to be able to standardize in Levels Two and Three.

PRA Level One was submitted for balloting at the January 2000 quarterly HL7 meeting. Level Two PRA will be developed in 2000. Development of PRA Level Three will follow Level Two.

6.1.1 How Do We Get There?

Leverage GCPR CORBAMed Efforts. The GCPR project is investigating the use of CORBAMed, which is based around many of the concepts and explicit models that are part of HL7 v.3. This work can be leveraged as a pilot for these technologies that will most likely be used in VISTA as well.
Proceed with the Caché Object Migration: Common Object Services (COMCOS) Project. Caché will be providing XML technology in a future version that may be applicable to VISTA's use of HL7 v3 and the Patient Record Architecture. Leveraging this technology to support HL7 v3 will be one of the benefits of the proposed COMCOS project.

6.2 Report Services: XML/XSL/Browser Combination

Traditional VISTA reports are printed using mono-spaced fonts on a page of a fixed with, e.g., 80 or 132 columns. The palette of styles from which developers can draw on to produce reports is very limited. Moving beyond fixed-column report requires to present data in a complex fashion, e.g., embedded graphics, cascading columns, proportional type, and so forth, requires complex programming beyond the capabilities provided by the Kernel Device Handler environment in VISTA.

The convergence of eXtensible Markup Language (XML), eXtensible Style Language (XSL) style sheets and an XML-enabled browser such as Microsoft Internet Explorer 5 present an opportunity to take advantage of commercial technology to produce polished, modern reports to the end-user. The VHA Architects describe the power from the combination of XML and XSL as follows:

The power and beauty of XML is that it maintains the separation of the user interface from the structured data. HTML specifies how to display data in a browser, whereas XML defines the content. In HTML, tags are used to tell the browser to display data as bold or italic; with XML, only tags describing the data (e.g., patient name, address, and clinical notes) are used. In XML, style sheets are used such as eXtensible Style Language (XSL) and Cascading Style Sheets (CSS) to present the data in a browser. XML separates the data from the presentation and the process, enabling display and processing of the data as desired by applying different style sheets and applications.

XML is valuable to the Internet, as well as to large corporate Intranet environments, because it provides interoperability using a flexible, open, standards-based format, while offering new ways of accessing legacy databases and delivering data to Web clients. Applications can be built much more quickly, are easier to maintain, and can easily provide multiple views of the structured data.

The architects provide a live demonstration of XML and XSL, currently accessible from http://vaww.va.gov/vha-ita/resources/xml.htm. The demonstration allows you to apply different views to the same data from a health summary in XML format by using different XSL style sheets. Simply by applying a different style sheet, the results to the end-user include:

· Views of selected portions only of the data, e.g., demographics only, clinic visits only, lab tests only, etc.

· Report that is viewable in a Browser

· Report that is printable from Browser

· Report with modern, appealing formatting

The possibility of a set of standard clinical XML messages coming with the advent of HL7 version 3 adds more appeal to this scenario. The very messages through which data is exchanged from system to system in HL7 format (e.g., a lab results message) may, with the application of the appropriate XSL style sheet, be directly viewable by the end-user with no intervening programming required.

The use of this technique is not restricted to HL7 version 3 documents, however, but can be used for virtually any kind of data. With or without the generation of XML-based HL7 version 3 messages, the use of XML output combined with XSL style sheets offers a compelling mechanism to publish data in printable format to the end-user.

Commercial tools are available to validate and parse XML messages. None are currently available on the M platform, although InterSystems will provide direct support for XML in Caché in a future version. Many tools are available on the Windows platform, however, including an XML parser built into Internet Explorer 5 that is designed for use by external software applications as well as Internet Explorer.

6.2.1 How Do We Get There?

Leverage GCPR CORBAMed Efforts. The GCPR project is investigating the use of CORBAMed, which is based around many of the concepts and explicit models that are part of HL7 v.3. GCPR will probably include work to pioneer the use of XML as well. This work can be leveraged as a pilot for these technologies that will most likely be used in VISTA.
Proceed with the Caché Object Migration: Common Object Services (COMCOS) Project. Caché will be providing XML technology in a future version that may be applicable to VISTA's use of HL7 v3 and the Patient Record Architecture. Leveraging this technology will be one of the benefits of the proposed COMCOS project.

6.3 SOAP Protocol

Simple Object Access Protocol (SOAP) is a new XML-based messaging protocol that is gaining wide industry support:

SOAP provides a simple and lightweight mechanism for exchanging structured and typed information between peers in a decentralized, distributed environment using XML. SOAP does not itself define any application semantics such as a programming model or implementation specific semantics; rather it defines a simple mechanism for expressing application semantics by providing a modular packaging model and encoding mechanisms for encoding data within modules. This allows SOAP to be used in a large variety of systems ranging from messaging systems to RPC.

IBM and Lotus jointly submitted the most recent SOAP specification (version 1.1) to the W3C (World Wide Web Consortium) for approval as a standard. Microsoft is building its Next Generation Windows Services (NGWS) around SOAP. SOAP has also garnered support from Sun Microsystems, Inc. — as such, SOAP may be the only major strategic middleware initiative to have support from both Sun and Microsoft
. SOAP owes this support to a number of factors, among them that SOAP is based in XML, and that it provides loose, vendor-independent coupling between heterogeneous systems.
In VISTA, SOAP could be used as the new VISTA client-server communication mechanism for GUI applications, replacing the RPC Broker. Microsoft's next generation of visual development tools will provide built-in support to invoke RPCs using SOAP. They note:

Because Web services [i.e., SOAP] are accessible using URLs, HTTP, and XML it means programs running on any platform and in any language can access Web services. The Web services themselves do not need to be written using Visual Studio or be built using a Windows operating system.

Therefore, providing SOAP support in VISTA could allow COTS client development tools, for the first time, to access VISTA RPCs directly.

SOAP may also have applications in server-to-server communications. First-glance appraisals suggest SOAP could serve as a robust mechanism for supporting service models (both domain specific and general) established by OMG, thus eliminating many complexities associated with ORBs and CORBA, while preserving the service model value.

Finally, SOAP may also prove useful as a mechanism enabling Caché applications to invoke RPCs from component-based middle-tier applications residing on Windows boxes.

6.3.1 How Do We Get There?

Prototype SOAP Connectivity to Caché Objects. One of the areas for the Caché Object Migration: Common Object Services project to investigate is providing SOAP connectivity to Caché Objects.
6.4 PKI-Based Digital Signatures and Authentication

The Health Insurance Portability and Accountability Act (HIPAA) will require revamping VISTA's security infrastructure. Part of this effort will affect client clinical applications, both GUI and Web-based. It is likely that Public Key Infrastructure (PKI) will be used to meet many of the security requirements imposed by HIPAA (GartnerGroup advises healthcare organizations that they will have to implement PKI in order to comply with HIPAA's security requirements.
)

· VISTA user's public keys (embedded in certificates) will likely be made available using LDAP (Lightweight Directory Access Protocol) directory technology, such as Microsoft's Active Directory.

· It is likely that smart card technology will be required, on the other hand, to protect user's private keys.

The immediate benefit from PKI for VISTA will be in introducing PKI-based digital signatures so that orders, progress notes, and other clinical documents can be digitally signed.

In the longer run, sign-on modules and procedures used by client GUI and Web applications would need to be adapted if VISTA moves to a PKI-based authentication model.

VISTA's client application front ends will be affected by the introduction of PKI-based security technology. In particular, to access the APIs required to create digital signatures, any "signing" application may require a GUI or Web-based front end (as opposed to a character-based front end).

6.4.1 How Do We Get There?

Leverage OI BEST PKI Pilots.

Leverage DEA-VA Controlled Substances PKI Pilot.

A P P E N D I X
A.
Tactical View

This appendix summarizes the tasks needed to create the services described in the VISTA 2001 Clinical Application Architecture. It is drawn from the "How Do We Get There?" listings in Section 4 ("VISTA 2001 Clinical Application Architecture").

	Service
	How Do We Get There?

	Standards and Conventions
	Complete the GUI SAC. At the time of writing, a GUI Standards and Conventions (SAC) document has not yet been released, but an OI Technical Services committee is currently creating it.

Create a Web SAC. A Web SAC is needed to guide VISTA Web application development.

Modify OI Technical Services SOPs. The existing body of SOPs will need to be reviewed and modified as necessary to support the guidelines of the GUI and Web SACs.

Create a VISTA Individual Application Migration Strategy. A set of guidelines will be generated for developers (and integrators) to follow, so that each individual application development effort will further VHA's enterprise goals in the area of IT Architecture. This strategy will be created as an output from the Caché Object Migration: Common Object Services (COMCOS) project, based on the experiences in creating the initial set of Kernel services as the first wave of a VISTA transition.

	Business Application Layer

	Implement Caché (or Other Technology) At VA Facilities (NVS, VCIOC). National VISTA Support and the VISN CIO Council plan to implement Caché at all VA medical facilities. Implementation is slated for completion in summer 2001. This is a minimum requirement if the COMCOS project is to proceed with actually implementing a Caché Objects business application layer.

Proceed with the COMCOS Project. TS R&D work in the Caché Strategic Evaluation Project (CSEP) suggests that implementing a business application layer is a desirable direction to move in. The Caché Object Migration: Common Object Services (COMCOS) project will move forward to develop the core in-house infrastructure and tools needed to integrate support for the new business application layer in VISTA.

Convert Clinical Business Logic to New Business Application Layer. Move all business logic not currently on the M server out of clinical client GUI software, and place it on the server in the new business application layer technology implemented by the COMCOS project.

Implement the First Clinical Application Using the New Business Application Layer. Identify a small clinical application or module that is not mission-critical. Implement the application placing all business rules in the new business application layer technology. The presentation layer will have no direct knowledge of the data access layer. Create and release the application in a short timeframe, developing needed infrastructure in parallel. The experiences learned in developing and deploying the first application will be used to direct further "separate business application layers" architecture development.

	Web Services
	Put IIS capability in place. Separate NT boxes will be needed to run IIS. IIS itself is already paid for with VHA's Microsoft Custom License Agreement. TS will work with the VCIOC, Customer Services, and Implementation and Training Services, to determine the best way to implement IIS at the field level.

Enable SSL through PKI Digital Certificates. IIS supports SSL using Public Key Infrastructure (PKI) digital certificates, which can be procured in one of two ways, either through the implementation of a VA-wide Certificate Authority, or through the purchase of individual server certificates from PKI vendors. Implementing SSL will allow traffic between Web browsers and IIS to be encrypted and therefore protected.

Deploy Caché VHA-wide. This will enable the possibility of using Caché Server Pages, the Web application development environment provided by InterSystems for Caché systems. This is scheduled for completion by OI Customer Services in early 2001.

Proceed with the COMCOS Project. With a business application layer such as Caché in place at every VHA facility, building infrastructure (such as an automated mapping from VA FileMan to Caché Objects and Caché SQL) will enable VISTA data to be accessed in a variety of ways, such as through Caché Objects, Caché Server Pages, or via ODBC from Web-based Active Server Pages running on an IIS server.

Implement the First Web-Based Standalone VISTA Clinical Application. Identify a small VISTA clinical application, which is not mission-critical. The application will be one for which a Web front end will be appropriate (i.e., not overly complex visually). Create and release the application in a short timeframe, developing needed infrastructure (e.g., Web-based Kernel signon) in parallel. The experiences learned in developing and deploying the first Web-based VISTA clinical application will be used to direct further VISTA Web-based development.

	GUI Composite Application Framework
	Build a GUI Composite Application Framework. A framework will be created that can be used to integrate, at run-time, separately developed components in a single composite application. Standards and development guides for writing components for the framework will need to be created and promulgated.

Transform CPRS. CPRS needs to transition from a monolithic, pre-compiled application to a set of run-time components running in the GUI composite application framework. This is not a minor undertaking. The CPRS team will need either additional resources, or some relief from responding to enhancement requests, in order to componentize CPRS.

Transform GUI Vitals and Clinical Procedures. These applications, as appropriate, will be transformed into run-time components that will run in an instance of the GUI composite application framework — the CPRS composite application, the BCMA/bedside composite application, and/or both.

Modify RPC Broker (or Successor Technology). In order to share a single RPC Broker connection, the GUI composite application must establish an RPC Broker application context. Some modifications to the RPC Broker's "application context" scheme are needed to support multiple component contexts when the only active application context is that of the GUI composite application framework. Note: Application contexts are used by the RPC Broker to establish security over remote procedure calls (RPCs).

	Web Composite Application Framework
	Build a Web-based Clinical Composite Application Framework. Build a Web-based composite application framework, similar in concept to the GUI composite application framework, supporting modular implementation of Web-based clinical functionality for a Web-based "CPRS Lite".

Provide Web services. Put in place Web services sufficient to support robust Web-based clinical development. IIS will form the foundation of these Web Services. The VCIOC and NVS will need to be involved in implementing both IIS (which will run on its own NT box) and a Web services solution at all VISTA facilities, as pre-requisites for substantial Web-based clinical development.

Convert Clinical Business Logic to New Business Application Layer. Move all business logic not currently on the M server out of clinical client GUI software, and place it on the server in the new business application layer technology implemented by the Caché Object Migration: Common Object Services (COMCOS) project. This will allow Web-based clinical applications to use the same business logic as GUI clinical applications.

Consider Building Option-based Menu System for Web Applications. This will allow site managers to control access to Web applications through a familiar mechanism -- the Kernel Option file. Access will be based on a persistent User object maintaining state, created after a Web-based logon.

Leverage Health eVet Project. The Health eVet project is exploring the feasibility of providing the veteran with an electronic copy of their electronic health record in a secure and private manner. It may be possible to leverage knowledge gained from this project for the development of mainstream VISTA clinical applications as well.

	Context Management
	Convert Clinical Applications to Support CCOW. Each CCOW application participant (CPRS, VISTA Imaging, etc.) will be modified to convert from their current pre-CCOW mechanisms (patient selected, TIU note selected and radiology report selected) to CCOW mechanisms (patient context, custom subject context). This is a non-trivial task, although there is a COTS Software Development Kit (SDK) that can be procured to assist in this effort. Note that CCOW contexts can be implemented independently, e.g., patient context can be implemented in applications independently of custom contexts.

Modify ESSO to support CCOW User Context. ESSO uses an NT-based user "context" to automatically sign on users to VISTA applications. An extension of this functionality will leverage the NT logon to establish a CCOW-compliant user context so that CCOW-based single-signon could be enabled for COTS applications as well. In addition, the user mapping database that ESSO uses to map NT usernames to VISTA usernames could be extended to server the role of a CCOW user mapping agent, which associated COTS system usernames to the NT logon (as ESSO maps VISTA system usernames to the NT logon).
(optional) Build Patient Mapping Agent Functionality. An optional CCOW component is a context mapping agent, which maps context subjects on one system to context subjects on another system. 3M's commercial MPI product will provide a CCOW-compliant mapping agent for patient contexts. VHA's MPI, however as a national level MPI, is probably unsuited to the mapping needs of local COTS systems. A patient mapping agent is needed only to support context switching with COTS, CCOW-compliant applications that do not themselves use the VISTA patient identifier. It is not needed for VISTA applications, as they are already synchronized on the same patient identifier.

Initiate National Procurement of Context Managers. To get maximum cost benefits, VHA will pursue a national purchase of a CCOW context manager (one is commercially available from Sentillion, Inc.) or build one (a less desirable option).

Investigate Emerging CCOW 1.2 Standard for Web Clients. Version 1.2 of the CCOW standard, which has not yet been released, contains a technology mapping of CCOW for Web-based applications. VISTA needs to research how to best implement CCOW for Web applications.

Reconcile VHA User Signon and Patient Lookup Policies with CCOW Standard. With CCOW altering the way in which VISTA applications choose new patients and, possibly, authenticate their users, existing policies will be reviewed for any potential conflicts. In particular, switching to a sensitive patient via CCOW must be examined (to ensure that all VISTA business rules are followed, including sensitive patient warnings). In addition, allowing non-interactive logons to VISTA based on logons to a COTS system must be examined and, perhaps, restricted.

Increase VA Participation in CCOW Standard Development. Traditionally, OI attendees at quarterly HL7 Working Group meetings have been HL7 messaging developers and VHA Architects. With the advent of the CCOW standard as part of HL7, CPRS, VISTA Imaging and other TS clinical development teams should also become involved with the HL7 CCOW standards process, and should send representatives to the quarterly HL7 Working Group meetings.

	Kernel Components
	Build GUI and Web Alert Processing Modules. Kernel alerts functionality must be transitioned to the GUI environment. A prototype of a GUI Caché Objects-based alert module prototype was created during the course of the Caché Strategic Evaluation Project (CSEP)
. The CSEP prototype provides a user interface for processing alerts, a mechanism for GUI applications to register which displayed alerts they can process, and a mechanism to invoke that processing. This prototype will be made into a production application, using either RPC Broker or successor technology.

Build GUI and Web VISTA Printing/Tasking Module. M servers still must know where to direct print jobs to, in which case Kernel device selection is still a necessity on clients. This module will allow applications to easily select printers on the M server or on the GUI client to direct print jobs to, as needed. Tasking of jobs to M server printers will be supported through this module as well.

Build GUI and Web User's Toolbox Module. The Kernel User Information module provided for character-based users will be transitioned to the GUI environment, so that users can access Display/Edit User Characteristics, Electronic Signature Code Edit, and tasked job monitoring and cancellation functionality, without invoking a character-based session.

Build Web-Based Signon Module. Web development is less mature in VISTA than GUI development. To jump-start Web development efforts, a Web-based Signon module will be provided. This module will be implemented using a Web technology suited for modular applications that can easily invoke each other, maintain state and return parameters; Caché Server Pages is a strong candidate.

Build Support in Kernel Option File for Web Options. Security for VISTA Web-based applications should be managed through the existing, familiar Kernel security mechanisms (until such time as those mechanisms are managed in a different environment). VISTA Web applications will be invoked through Kernel's Option file-based security, as options.

Build Server Date/Time Module. Client applications need an approved method through which they can obtain the server's current date/time.

Build "Get Authorized Security Keys" Module. Client applications need an approved method to determine which security keys the current user holds.

Build Electronic Signature Code Module. Client applications need an approved method to interface with Kernel Electronic Signature Code functionality.

Build PKI-Based Electronic Signature Code Module. Current DEA regulations require paper sign-off of orders for controlled substances. The DEA has proposed a pilot with VA to use Public Key Infrastructure (PKI) to replace paper sign-offs. VA will move ahead with this pilot, which could ultimately serve as a pilot for a PKI-based successor for the existing VHA M-based Kernel electronic security code module, and may lead the way to a PKI-based signon. In addition, v. 1.3 of the HL7 CCOW standard may also provide a framework for the use of digital certificates for digital signatures. Note: If smart cards are used for holding the user's private key, then any application generating a digital signature on behalf of a user must employ a Web-based or GUI-based front end. Character-based applications cannot access the key store on the workstation.

Build Other Kernel Modules Identified by Caché Object Migration: Common Object Services (COMCOS) Project. Modules encapsulating additional, appropriate Kernel supervisor and user options will be built employing the business application layer deployed by the COMCOS project.

	VISTA Web Portal
	Create VISTA Web Portal. This application will organize the suite of VISTA applications and functionality that need to be launched on a GUI workstation. Select the appropriate portal technologies/infrastructure, and provide the needed VISTA-specific components and infrastructure to tailor the portal for VISTA use.

	Server Connection
	Proceed with the Caché Object Migration: Common Object Services (COMCOS) Project. TS R&D work in the Caché Strategic Evaluation Project (CSEP) suggests that implementing a new type of business application layer is a desirable direction to move in. Part of the COMCOS project will also address how to provide server connections — the connectivity between GUI client/server applications and the new business application layer. The COMCOS project will begin developing the core in-house infrastructure and tools needed to implement the new business application layer, including server connections.

Investigate COM+ and CORBA server connectivity. A pilot project will investigate whether it is practical, in a VISTA context, to use the asynchronous (and synchronous) capabilities of COM+ and/or CORBA to provide client connectivity to VISTA's business application layer.

	Online Help
	Build GUI Composite Application Help Framework. Create a framework and a set of standards and conventions to support modular distribution and integration of help files in the GUI composite applications.

Build Web Composite Application Help Framework. Create a framework and a set of standards and conventions to support modular distribution and integration of help files in the Web-based composite applications.

	Installation
	Create VISTA GUI Windows Applications According to Microsoft Guidelines. VISTA developers will create applications to be compatible with Microsoft's ZAW initiatives. The best way to achieve this is to build applications that comply with Microsoft's Application Specification for Microsoft Windows 2000 for desktop applications. This guide details the technical requirements for applications to earn the "Certified for Microsoft Windows" logo. A major portion of satisfying these technical requirements involves compatibility with the ZAW initiatives including IntelliMirror, Windows Installer, WTS and SMS.

Complete VISN SMS Implementation. With the support of the VCIOC, the NVS National Operations - Administration Team is working to implement one Microsoft Zero Administration for Windows (ZAW) initiative, SMS, across all VISNs and VHA facilities. Once implemented, they envision taking responsibility for such tasks as providing SMS package distribution scripts for VISTA and non-VISTA software.

Begin VISN IntelliMirror Implementation as part of Windows 2000 Rollout. IntelliMirror adds an important capability lacking in SMS: client auto-updates of software. This will allow SMS to be used to update clients without taking server software offline: in the case where a client accesses the updated server software before SMS has updated the client, it will then be auto-updated via IntelliMirror. Adding this capability is dependent on completing the rollout of Windows 2000 in VHA. It is likely that NVS National Operations - Administration team will play a similar role with IntelliMirror as they are doing with SMS. The VCIOC will need to first decide to support Active Directory and IntelliMirror at the VISN/facility level.

Modify the RPC Broker's IP Addressing to Support WTS. The RPC Broker needs to be modified to detect if it is running in a WTS environment, in which case it will use WTS APIs to obtain the appropriate IP address information for the connecting workstation, rather than returning the IP address of the WTS system. Alternatively, the RPC Broker client agent can be removed from the RPC Broker architecture (it is the client agent's "callback" feature that causes problems in the WTS environment).

Build Version-Checking Capability into RPC Broker or Successor Technology. This will ensure, in the absence of IntelliMirror functionality, that inappropriate versions clients are not used to connect to server applications. The version-checking capability may be either site-configurable or developer-configurable, as appropriate.

	(R&D)
	Leverage GCPR CORBAMed Efforts. The GCPR project is investigating the use of CORBAMed and HL7 v3, which is based around many of the concepts and explicit models that are part of HL7 v.3. This work can be leveraged as a pilot for these technologies that will most likely be used in VISTA as well.
Proceed with the Caché Object Migration: Common Object Services (COMCOS) Project. Caché will be providing XML technology in a future version that may be applicable to VISTA's use of HL7 v3 and the Patient Record Architecture. Leveraging this technology to support HL7 v3 will be one of the benefits of the proposed COMCOS project.

Prototype SOAP Connectivity to Caché Objects. One of the areas for the Caché Object Migration: Common Object Services (COMCOS) project to investigate is providing SOAP connectivity to Caché Objects.

Leverage OI BEST PKI Pilots.

Leverage DEA-VA Controlled Substances PKI Pilot.

A P P E N D I X
B. References

Alschuler, Liora, Introducing HL7's Patient Record Architecture, HL7 News, Health Level Seven, Inc., January, 2000.

Brodie, Michael L. and Stonebraker, Michael, Migrating Legacy Systems: Gateways, Interfaces & the Incremental Approach, Morgan Kaufmann Publishers, Inc., 1995.

Dept. of Veterans Affairs, CAIRO, The VISTAtion Clinical Workstation Project Version 1.1, October 6, 1999.

Dept. of Veterans Affairs, OI BEST, Enterprise Single Sign On, 1999, http://vaww.va.gov/techsvc/projects/single.htm.

Dept. of Veterans Affairs, OI Customer Services, White Paper: National VISTA System Upgrade Proposal, December 20, 1999, http://152.130.1.210/.

Dept. of Veterans Affairs, OI Technical Services, Capacity Management Review: Assessment of System Performance Issues, November 16, 1999.

Dept. of Veterans Affairs, OI Technical Services, Integrating Programs with CPRS: ITC Handout, 1998.

Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

Dept. of Veterans Affairs, Technical Service, OpenVISTA Strategic Plan for Information Sharing, April 1999, http://www.vista.med.va.gov/openvista/.

Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture Fiscal Year 1999 Plan, 1999, http://vaww.va.gov/vha-ita/.

Dept. of Veterans Affairs, OI VHA Architects, VHA Information Technology Reference Architecture FAQ, 1999, http://vaww.va.gov/vha-ita/faqs.html.

Dept. of Veterans Affairs, VHA Architects, What Is XML?, 1999, http://vaww.va.gov/vha-ita/resources/xml.htm.

Dept. of Veterans Affairs, VHA OI Technical Services, Caché Strategic Evaluation Project (CSEP) Report of Findings, 2000, http://vaww.vista.med.va.gov/csep/.

Duke University Healthcare System, Clinical Context Object WorkGroup Sample Code, 1999, http://www.mcis.duke.edu/standards/CCOW/SampCode.htm.

Eeles, Peter and Sims, Oliver, Building Business Objects, John Wiley & Sons, Inc., 1998.

Fan, Michael and Thomas, Anne, Architecting for the Future, Inprise Corporation, 2000, http://www.inprise.com/about/insight/papers/archfuture.

Fowler, Martin, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

Health Level Seven, Context Management ("CCOW") Specification, Technology- and Subject-Independent Component, Architecture Version CM-1.1, 1999.

Microsoft Corporation, Application Specification for Microsoft Windows 2000 for Desktop Applications, v. 1.0, June 14, 1999, http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/specs/w2kcli.htm.

Microsoft Corporation, Introduction to IntelliMirror, 1999, http://technet.microsoft.com/cdonline/Content/Complete/windows/win2000/win2ksrv/prodfact/intmiror.htm.

Microsoft Corporation, Lowering TCO with Active Directory-Enabled Applications, Microsoft Technet, 1998, http://www.microsoft.com/technet/tco/deavis1.htm.

Microsoft Corporation, Microsoft's System Management Server, October 11, 1999, http://www.microsoft.com/technet/deploy/smstr.htm.

Microsoft Corporation, Windows 2000 Simplifies Top 15 Administrative Tasks, February 2000, http://www.microsoft.com/windows2000/library/howitworks/management/adminsave.asp.

Mittman, Robert and Cain, Mary, The Future of the Internet in Health Care, California HealthCare Foundation, January 1999.

Nussbaum, Gerard M. and Ault, Star P., Requirements for Web-Enabling Clinical Applications, Journal of Healthcare Information Management, HIMSS, Volume 14, Number 1, Spring 2000.

Oswald, Mark, Application Architecture Best Practices, Advance for Health Information Executives, February 2000, Vol. 4 No.2.

Sentillion, Inc., CCOW Standard Overview, 1999, http://www.sentillion.com/s_documents.html.

Tindall, Paul, Developing Enterprise Applications - An Impurist's View, Que, 2000.

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

Critical Issues Targeted

	�EMBED Photoshop.Image.5 \s���	Lower TCO

	�EMBED Photoshop.Image.5 \s���	Synchronizing Multiple Apps.

	�EMBED Photoshop.Image.5 \s���	Composite GUI Applications

	�EMBED Photoshop.Image.5 \s���	Extensibility

	�EMBED Photoshop.Image.5 \s���	Client Services Gap

	�EMBED Photoshop.Image.5 \s���	Web Strategy

�EMBED Word.Picture.8���

� EMBED Visio.Drawing.5 ���

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 137.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000. pg. 137.

� Health Level Seven, Context Management ("CCOW") Specification, Technology- and Subject-Independent Component, Architecture Version CM-1.1, 1999, p. 15.

� Tindall, Paul, Developing Enterprise Applications - An Impurist's View, Que, 2000, p. 45.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� GartnerGroup, HIMSS Preconference Workshop Conference Presentation, April 9, 2000.

� Dept. of Veterans Affairs, OI Technical Services, Integrating Programs with CPRS: ITC Handout, 1998.

� Brodie, Michael L. and Stonebraker, Michael, Migrating Legacy Systems: Gateways, Interfaces & the Incremental Approach, Morgan Kaufmann Publishers, Inc., 1995, p. xvii-xviii.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 37.

� Mittman, Robert and Cain, Mary, The Future of the Internet in Health Care, California HealthCare Foundation, January 1999.

� The Wall Street Transcript, CEO/Company Interview: Neal L. Patterson, Cerner Corporation, February 2000, http://www.twst.com/pdf/cern.pdf.

� IDX Systems Corporation, 1999, http://www.idx.com/IDXCOM/.

� IDX Systems Corporation, 1999, http://www.idx.com/, "Technology" page.

� Abaton.com, Press Release: McKessonHBOC Acquires Abaton.com, Leading Developer of Internet-Based Healthcare Solutions, 1999, http://www.abaton.com/whatsnews/press991115.html.

� Shared Medical Systems (SMS), 2000, http://www.smed.com/spot/spot-cp/technology.htm.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 26.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 67.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 15.

� Nussbaum, Gerard M. and Ault, Star P., Requirements for Web-Enabling Clinical Applications, Journal of Healthcare Information Management, HIMSS, Volume 14, Number 1, Spring 2000.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 39.

� Microsoft Corporation, Microsoft.NET Realizing the Next Generation Internet, June 2000, http://www.Microsoft.com/PressPass/topics/f2k/whitepaper/default.asp.

� Health Data Management, Taps for One System, Reveille for Another, vol. 8 number 4, April 2000.

� GartnerGroup, Web Access to Applications: One Size Does Not Fit All, January 16, 1999.

� GartnerGroup, Web Access to Applications: One Size Does Not Fit All, January 16, 1999.

� GartnerGroup, Web Access to Applications: One Size Does Not Fit All, January 16, 1999.

� Oswald, Mark, Application Architecture Best Practices, Advance for Health Information Executives, February 2000, Vol. 4 No.2.

� Dept. of Veterans Affairs, Technical Service, OpenVISTA Strategic Plan for Information Sharing, April 1999, p. 81.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 134.

� Tindall, Paul, Developing Enterprise Applications - An Impurist's View, Que, 2000, pp 19-20.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 136.

� Fan, Michael and Thomas, Anne, Architecting for the Future, Inprise Corporation, 2000, http://www.Inprise.com/about/insight/papers/archfuture.

� Eeles, Peter and Sims, Oliver, Building Business Objects, John Wiley & Sons, Inc., 1998, p. 5.

� Fowler, Martin, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999, p. 370.

� Tindall, Paul, Developing Enterprise Applications - An Impurist's View, Que, 2000, pp. 155-156.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 195.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 38.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� Nussbaum, Gerard M. and Ault, Star P., Requirements for Web-Enabling Clinical Applications, Journal of Healthcare Information Management, HIMSS, Volume 14, Number 1, Spring 2000.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000

� Health Level Seven, Context Management ("CCOW") Specification, Technology- and Subject-Independent Component, Architecture Version CM-1.1, 1999, p. 15.

� Sentillion, Inc., CCOW Standard Overview, 1999, � HYPERLINK "http://www.sentillion.com/s_documents.html" ��http://www.sentillion.com/s_documents.html�.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 38.

� Dept. of Veterans Affairs, VHA OI Technical Services, Caché Strategic Evaluation Project (CSEP) Report of Findings, 2000, http://vaww.vista.med.va.gov/csep/.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 51.

� Microsoft Corporation, Digital Dashboard Overview, 2000, http://www.microsoft.com/solutions/km/DDoverview.htm.

� Microsoft Corporation, Digital Dashboard Business Process Assessment Guide, May 2000, http://www.microsoft.com/solutions/km/DDBPAG.htm.

� Microsoft Corporation, Digital Dashboard Overview, 2000, http://www.microsoft.com/solutions/km/DDoverview.htm.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 67.

� Dept. of Veterans Affairs, OI Technical Services, Migration Analysis for VISTA, 2000.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 175.

� Microsoft Corporation, Introduction to IntelliMirror, 1999, http://technet.microsoft.com/cdonline/�Content/Complete/windows/win2000/win2ksrv/prodfact/intmiror.htm.

� Dept. of Veterans Affairs, VHA Architects, Information Technology Architecture 2000, 2000, pg. 174.

� Dept. of Veterans Affairs, OI Technical Services, Capacity Management Review: Assessment of System Performance Issues, November 16, 1999.

� Alschuler, Liora, Introducing HL7's Patient Record Architecture, HL7 News, Health Level Seven, Inc., January, 2000.

� Alschuler, Liora, Introducing HL7's Patient Record Architecture, HL7 News, Health Level Seven, Inc., January, 2000.

� Dept. of Veterans Affairs, VHA Architects, What Is XML?, 1999, http://vaww.va.gov/vha-ita/resources/xml.htm.

� IBM Corporation, SOAP: Simple Object Access Protocol, April 18, 2000, http://www-4.ibm.com/software/developer/library/soap/soapv11.html.

� cnetNews.com, Sun Changes Tune in Support of SOAP Protocol, June 7, 2000, http://news.cnet.com/news/0-1003-200-2033523.html?tag=st.ne.1002.lthd.1003-200-2033523.

� Microsoft Corporation, Visual Studio Enables the Programmable Web, February 25, 2000, http://msdn.microsoft.com/vstudio/nextgen/technology/webservices.asp.

� GartnerGroup, PKI Selection Criteria for Healthcare Organizations, February 1, 2000.

� Dept. of Veterans Affairs, VHA OI Technical Services, Caché Strategic Evaluation Project (CSEP) Report of Findings, 2000, http://vaww.vista.med.va.gov/csep/.

[image: image41.png]

Department of
Veterans Affairs
12/30/99
VISTA Clinical Application Architecture
2

[image: image42.png]

[image: image43.png]

[image: image44.png]

[image: image45.png]

[image: image46.png]

[image: image47.png]

[image: image48.png]

[image: image49.png]

[image: image50.png]

[image: image51.png]

[image: image52.png]

[image: image53.png]

[image: image54.png]

[image: image55.png]

[image: image56.png]

[image: image57.png]

[image: image58.png]

[image: image59.png]

[image: image60.png]

[image: image61.png]

[image: image62.png]

[image: image63.png]

[image: image64.png]

[image: image65.png]

[image: image66.png]

[image: image67.png]

[image: image68.png]

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

[image: image73.png]

[image: image74.png]

[image: image75.png]

[image: image76.png]

[image: image77.png]

[image: image78.png]

[image: image79.png]

[image: image80.png]

[image: image81.png]

[image: image82.png]

[image: image83.png]

[image: image84.wmf]

[image: image85.wmf]Source: Information Technology Architecture

BUSINESS

INFRASTRUCTURE

DATA

APPLICATIONS

INFORMATION

Policy

Standards

rule classes

time

Security

[image: image86.wmf][image: image87.wmf]Source: Information Technology Architecture

BUSINESS

INFRASTRUCTURE

DATA

APPLICATIONS

INFORMATION

Policy

Standards

rule classes

time

Security

[image: image88.wmf][image: image89.wmf][image: image90.wmf]

[image: image91.wmf][image: image92.wmf][image: image93.wmf][image: image94.wmf][image: image95.wmf][image: image96.wmf][image: image97.wmf][image: image98.wmf]_1018339579.psd

_1018339595.psd

_1018339606.psd

_1018339609.psd

_1024126248.vsd
BUSINESS�

INFRASTRUCTURE�

DATA�

APPLICATIONS�

INFORMATION�

time�

rule classes�

Policy�

Standards�

Security�

_1024124721.vsd
BUSINESS�

INFRASTRUCTURE�

DATA�

APPLICATIONS�

INFORMATION�

time�

rule classes�

Source: Information Technology Architecture�

Policy�

Standards�

Security�

_1018339608.psd

_1018339604.psd

_1018339605.psd

_1018339597.psd

_1018339591.psd

_1018339593.psd

_1018339594.psd

_1018339592.psd

_1018339582.psd

_1018339584.psd

_1018339580.psd

_1018339543.psd

_1018339558.psd

_1018339569.psd

_1018339571.psd

_1018339578.psd

_1018339570.psd

_1018339567.psd

_1018339568.psd

_1018339566.psd

_1018339554.psd

_1018339556.psd

_1018339557.psd

_1018339555.psd

_1018339546.psd

_1018339553.psd

_1018339545.psd

_1018339529.psd

_1018339533.psd

_1018339541.psd

_1018339542.psd

_1018339540.psd

_1018339531.psd

_1018339532.psd

_1018339530.psd

_1018339502.psd

_1018339507.psd

_1018339518.psd

_1018339520.psd

_1018339528.psd

_1018339519.psd

_1018339516.psd

_1018339517.psd

_1018339508.psd

_1018339515.psd

_1018339504.psd

_1018339506.psd

_1018339503.psd

_1018339492.psd

_1018339494.psd

_1018339495.psd

_1018339493.psd

_1018339481.psd

_1018339490.psd

_1018339491.psd

_1018339482.psd

_1018339479.psd

_1018339480.psd

_1018339477.psd

_1018339478.psd

_1018339469.doc

