Transcript for 2007 VeHU Session #239

Transcript for 2007 VeHU Session #239

Not Just Your Typical Building Blocks
Good morning. My name is Bo Dagnall, I'm with the HDR program. I'm co-presenting with Matt Green. We'll be talking about the HDR and the VHA information model. Those concepts may be new to you, so we'll try and introduce those. We'll also describe how the two products work together, what the nature of the dependency is between the HDR and the health information model called the VHIM, what the rationale for some of our architectural strategies were and why you should care ultimately. We're going to get a little bit geeky on you, I have to admit. It's a fairly technical topic, so at times we'll dive into the weeds. Feel free to let me know or let Matt know if we're off course a bit.

So a lot of what we're going to present draws on the principles as we understand them of the HealtheVet program, the HealtheVet program being the future platform that we build the next generation health information system on. We'll talk about principles along the way, and those will lead us into why we've done certain things the way we have. So with HealtheVet the idea is to have more of a distributed and networked collection of capabilities that are encapsulated into services. You might have heard of service oriented architecture, so the idea is that you define these capabilities based on business needs to support the practice and then you build services to support them. Once you've gotten this service type approach working, there needs to be some governance to ensure that the services are defined with structured interfaces so people know how to use them, and that they're used in the right sequence with the right orchestration so that a particular business use case follows the right sequence and pattern of services in order to meet their needs. There's an effort called the VDIM, VHA Dynamic Information Model, which is tasked with working with the business modelers to orchestrate service interactions that meet business needs. Also with a service oriented approach you need to have consistency and structure in the information that you pass between two services, one service to another. Think of CPRS as being both a front-end tool that clinicians use, but behind it it's also got an engine of sorts, an under the hood type thing that does the processing. That's a service, an order service for instance, and it might need to talk to the person identity service to understand some identity information about a person, or may need to talk to the lab service to complete a lab order, or whatever the case may be. The information that's passed between those two services needs to be structured and well-defined and consistent across the enterprise, and that's really what the VHA health information model, the VHIM, is trying to do. And the majority of the talk we'll talk about what the VHIM is and how we've used it in the HDR, both to be compliant with the requirements around the VHIM, but also to use it as an architectural strategy for some of our own implementation. Another key theme with the HealtheVet is that data is no longer owned or controlled by VA medical centers or by departmental applications. In today's world, you know lab at Tampa owns Tampa's lab data. In the reengineered world, more of a networked and distributed set of capabilities, that data becomes an enterprise asset owned by no one group in particular, and made shareable and portable and consistent across the enterprise. That's where efforts like ours, the health data repository, and the administrative data repository really play a key role, because we're the facilitators in the databases and services that end up persisting this enterprise-wide data and making it available to all the consumers in a structured way.

Also I need to jump into a couple of topics relating just about how we do coding with modern technology. It's a little bit different than how things may have been done in the MUMPS world, or in other more procedural type programming language. We're using object-oriented programming today, and one of the key things about object-oriented programming is how you look and how you consider data. With procedural programming your code was the business rules and how to execute things. The data was the parameters that passed through the system. They were just string values and numeric values that were manipulated along the way. In an object-oriented world the data itself becomes an object, just like the business rules. It has its own presence, its own set of characteristics, its own behavior, and you treat it differently, you treat it as an object as opposed to a parameter. That's a very important theme for what the VHIM is trying to do and how we in particular use the VHIM. We try to objectify data and treat it as an entity unto itself, and you'll see that theme throughout the rest of the presentation quite a bit.

There's a notion, it's a design pattern called domain models, and the word domain is overused quite a bit. Sometimes you'll hear people talk about domains in the context of information domains, such as the lab package is an information domain. Sometimes you hear about domains being talked of in the context of an application scope, so in the case of person service for instance, their scope is person identity management and traits. That's their domain. Different than maybe the other use of the word domain. In the HDR's case, our scope is clinical data. All clinical data that meets certain qualifiers, and we'll talk about those in a minute. So our domain is all of clinical data, we want to call that out so we're not confused by the use of the word domain, because we'll use domain in both contexts in this presentation. One to describe an information packet like lab, and two to describe the scope of an application like HDR. So domain models in this particular slide the context is the application domain. What is the scope of an application? And what is the data that's within that scope for that application? So the design pattern here is to objectify the data and then create what's called a domain model, which is a collection of all those objects from the data that you are responsible for packaged into a library if you will that represents your domain, HDR's domain, or person services domain, whatever the case may be. It's our domain model. We use domain models within the HDR and the clinical data service project quite extensively. Domain models are used to derive how we build our database schemas, they tell us what data to use in the database. They're also used to create the internal object representations that we process in our service layer, our code layer. So the idea of a domain model, that pattern, is very important to us and it's a key piece of how we use the VHIM. The VHIM helps us to find what our domain model is going to be.

A couple more notes on modern software approaches. In a distributed network environment, especially one as large as the VA's, you need to take into consideration the demand on the network. Today with VistA it's all happening locally within the hospital or within the sector or whatever, against a co-located VistA database. Network issues are not as big of a concern. In a distributed environment a transaction that's occurring at the Tampa Bay medical center might actually be processed at the Austin automation center in Texas. So there's a big network latency that can occur there. So one of the important things you need to consider is how you use that network and smart ways to use that network. One of the strategies that you do is you create your communications to be more coarse-grained rather than fine-grained. What I mean by that is rather than having a very chatty interface where first you ask for some data, you get it back, you do a little bit, ask for more data and get it back, and it's just kind of a back and forth thing. You ask for a bunch of data and you get a bunch of data back, and then you manipulate it as a package. The size of your data being passed is larger, but the frequency of the communications are much smaller. So we've tried to follow that pattern in our service implementation with the HDR. Another key theme, and I think I've already touched on this one, is that data is used objectively and it's implemented in multiple places. It use to be more that data was thought to be at the database layer and that's kind of where it lived. Data as an object lives in multiple places, it's in the database layer of course, that's where you persist it. It's also within the domain models of an application so that they can manipulate data and process their business rules against a set of objects that represent the data that they are responsible for. It's also used in that structured, what we call message payload. The unit of information that's passed between say the ordering service and the lab service. That needs to be a structured payload if you will. And that's a domain model unto itself. Data is objectified and implemented in multiple layers, those three being the key ones.

So what we're really trying to get to is the notion of interoperability. You need to have these standards in place, and these patterns in place, to really facilitate interoperability. Not only across VA medical centers within the VA network, but also with our external partners. With the Department of Defense, with the CDC. I heard a quote from another presentation that veterans receive a third or up to half of their healthcare outside the VA network, so there's obviously a need to be able to exchange data with private industries as well. So interoperability as it's defined here, and it's more the second definition that I'm going to speak to. I'm not sure if you can see the color-coding too well, there's a couple of things highlighted, one in blue and one in kind of a yellowish. It's really a combination of the ability to simply exchange, can we simply even talk the same language, can I give you something that you can process. Like an HL7 standard gives you at least that, you understand the same spec. So that's syntactic interoperability, you understand the syntax of what it is you're passing back and forth. But does it really guarantee that you understand the meaning of the data within it? Not unless you have consistency at the information model, so that's the semantic interoperability, that you can actually understand its syntax and then take it to the next step and actually use it. And again that's where the VHIM starts to play a large role.

I think I've touched on a lot of these points. The idea about interoperability, data used to be thought of more in the database layer only. So to get semantic interoperability so people understood each other's data and how to use it, there used to be more of an attempt to try and standardize the database layer, let everybody use the same database or everybody use the same schema. That notion has gone away with the service-oriented architecture because how data is persisted is not of importance. It's the services that are important in the service-oriented architecture, and it's how that services provide capabilities for you to do your job that matter. So we can persist in any number of different ways, and we could optimize it for any number of different purposes, as long as we have semantic interoperability and consistency at the service layer.

Okay, so that was a lot of background leading into what is the VHIM. The VHIM again stands for the VHA's Health Information Model. It's really intended to be an enterprise wide model. It's not just for labs, it's not just for pharmacy, it's not just for HDR. Oftentimes people think the VHIM is HDR's project. It's not. It's an enterprise project, Brent Welker is here from SE&I, they own it, we're just the first ones to implement it. It limits its scope somewhat. There is a lot of data, in another case I've done a Venn diagram, I wish I would have included that slide here. Think of the world of VA's data as this big circle. Some of that data only matters to the lab package, or only matters to the surgery package. It's really kind of their private data, no one else cares about it. It's not part of the legal health information record for a patient. So there's a subset of that larger circle that is the data that really needs to be shared and exchanged across departments, across VA medical centers. It's really part of the legal health record. The VHIM goes after that subset. Sometimes we call it shared, sometimes we call it viewable, viewable means that it needs to be viewable outside of the application that it originated from. So it originated lab and now needs to be viewable outside of lab, so that's criteria for being now shareable, and that's really what the VHIM focuses on modeling. It doesn't go after the whole world, it just models those four pieces. Within the VHIM they go with the domain principle as well. But again the reuse of the word domain here comes into play. Their use of the word domain is an information domain, and so more for convenience than anything they've subdivided the models into information domains. So they've got a package for lab and a package for vital signs, etc. They could have just done it as one huge model and we could print it out and fill up the entire side of this wall, but for manageability they decided to break it into packages, and they align those with the information domains that we're familiar with. You can think of these information domains as being somewhat of a pseudo independent unit. So in other words, lab's data is kind of a unit unto itself. It's got a set of strengths and semantics that describe lab, but yes there's some touchpoints out, maybe patient demographics or encounters or other pieces that are related to it, but unto itself lab is somewhat self-contained. So it made sense to do the VHIM modeling in this way. It also made sense because a single clinical transaction is typically limited to a single information domain. Most transactions are just for lab or just for pharmacy. There are some that cross, but the majority of our use cases that we expect will be based on a single information domain.

So the VHIM creates their models using the unified modeling language or UML. There's a number of UML diagrams that you can create. They create one specific one called a class diagram. A class diagram allows you to do certain things, it's a static view of the world, it's not undescribed behavior, in this case it's perfect for describing data. So they use it to create, well one they have packages which corresponds to our information domains, they have a construct called classes that corresponds to data objects, so there's a class for an allergy observation for instance. Each class can have attributes, so an allergy observation has what was observed, who did it, when was it done, those types of things. Those are the raw data elements themselves. It also has some constraints. It says an allergy observation relates to the class called an allergy reaction, and there's some structure to that relationship. There might be certain rules about that relationship that need to be enforced, so it's got the ability to define those semantics. It also describes and defines data in terms of their data types. It tells you which things are numbers, which things are dates, which things are complex data types that have codes and things of that nature. It tells you which things are optional or required, or required that you have three to five of them or whatever the case may be. It can also include additional more healthcare specific type constraints such as formats. Maybe we want to always see blood pressure with a three digit number followed by a forward slash followed by a two digit number, or something along those lines, so we can enforce that. We can enforce ranges, we can say that the valid range for a patient's weight is between some upper and lower limit, whatever that case may be. The VHIM is providing as a tool to do all this stuff, and it shouldn't be done by the IT sector. We're providing a capability and a tool, and we need a clinical business community to help us define and decide what the model should look like. How rigorous it should be constrained, what is the appropriate level of data quality that we can consider based on the model that we're going to create.

So here's a snapshot of a particular version of the VHIM. Notice that these little envelopes correspond to what's in a class diagram called packages, which translates to an information domain, and the lexicon I'm using here, so you'll see allergies is the second one, dietetic, dental, etc. There's some of the logical groupings of data that you might expect. If you were to drill down in any one of these you would start to see the actual class diagram, so an example here we show vital signs.

It's not the prettiest thing in the world, and for people that are not technical necessarily, this isn't the easiest way to understand their data. So there's a learning curve associated with it. But nonetheless, UML is a standard in the IT world, it's a very nice way to describe and show your data and be able to communicate it and have a picture you can look at that people can understand if they understand the rules of UML. To call out a couple of things, every one of these boxes basically is a class. It defines an object. In this case on the bottom left, purple, we've got one called a vital signs observation event. The event or a vital signs observation was recorded if you will. It contains certain attributes, those are those guys inside of the box. Body site, where on the body site was this observation recorded at. I'm trying to call out a couple of them. What was the time for it, what method was used to observe it, what was the actual value, what was its status, etc. This model may not necessarily be correct, and I'm not trying to get into that discussion, I'm just trying to demonstrate what a model looks like. It also has defined relationships to other classes, what are these lines here, these arrows that are coming off the purple box. Those are the semantic constraints that I was speaking of. It's got a thing called an author, which is a person who did it. It's got a thing called a location, where it was done, and a division, what section it was done within, who ordered it, etc., you can make these models quite extensive. And these semantics have certain constraints. One, they have names. That's not the name of the class or the data element, that's the name of the relationship. It's got requirements for cardinality and usage. That one says it's 0..1. What that means is a vital signs observation event may have zero or one divisions. The one on the left where it has the number 1 says that a vital signs observation event can have one and only one hospital location, in other words it's required. So you can start to describe your constraints this way. Every attribute was followed by a colon and then some crazy name here. These crazy names are the data types, these are defining what this data is supposed to contain. Some of them are real simple and straightforward, you see on the lower left there's a thing called record version, it's an integer, it's just a number, a whole number. Simple data type. Some of them are more complex, it's a location coded value. What the heck's a location coded value? If I had more time I would drill down and show you how a location coded value is defined, but in essence it's a coded element, it's been standardized, it's got a list of permissible values of known entities and whatever value gets populated there must be from that list, it's permissible things. That list itself has an assigning authority and it has a code set, and there's different things that describe what this location coded value is. So how can it be that, I told you two things, I told you we want to use object models for a couple of different purposes. Database, domain models, to describe payload. So how can one static model, how can this one thing meet all of those needs?

The answer is there's a growing trend in the healthcare and IT industry called Model Driven Architecture, MDA. It allows for a set of tooling and rules for doing model transformations,

by taking one view of the model which may be appropriate for some things, and transforming it into a different view that's appropriate for other things. This for instance may not be appropriate for database implementation, but may be just fine for defining a message structure.

You create these things called model transformations, and the idea if you've done modeling in the past there's a notion of you have a conceptual model that kind of describes things at the high level, aligns with the business purposes and what the model is supposed to be. Take it one step lower and you have platform specific models, or the logical models. This takes that same data but makes it platform aware, so now it's modeled in such a way that it's good for databases, or it's good for objects in an object-oriented programming language, or it's good for message structure or HL7, or whatever the case may be. And then there's the physical, the third layer where you actually create the real implementations of those logical models, you actually create the database schema, you actually create the Java objects, you actually create the XML schema definition document to define your message structure, etc. So your model transformations take you through the whole path. They give you computationally independent model at the top to align up your business needs, which then can be transformed to meet various implementation needs. One of the beauties of this strategy is one it separates modeling to align yourself with business needs for implementation, it gives you a layer of abstraction. But it also gives you great insulation and a layer of portability, because technology is going to change and if we were to only build a model that was good for databases based on today's database technology that's going to be outdated in a few years, so if we build a model at a more abstract layer, the conceptual layer, and then build rules for doing transformations, then we can transform to today's database technology and in the future we should be able to in theory anyway take that same computationally independent model and transform it into the database of the future. So we have portability of the knowledge, the organizational knowledge that's described in the model can be transformed forward as technology progresses.

So here's a picture of what I just described. On the top a couple of circles represent an object model. The VHIM CIM, again computationally independent model, when you do a conceptual to logical transformation you essentially create a different view of the model, but it's still a model, it's still UML. You might have a database Platform Specific Model, that's what PSM stands for, a Java object one, a payload one, these are still UML models but they've now been transformed to be appropriate for that target implementation. Then finally the logical to physical, the actual creation and manifestation of these things that we use to build IT solutions.

We want to demonstrate a couple of examples, and this is where it starts to kind of get a little bit into the weeds. So up on the top here is the computationally independent model for allergies, it's some version of the VHIM. Again I'm not trying to say this is the right version of allergies, it's just an example. There's different allergy types. There's a drug allergy, there's a food/drug allergy, there's a food allergy, and then there's some kind of catch-all, an unclassified allergy, and that's the way the VHIM has modeled different types of allergies. It's using a generalization pattern. In other words, what this arrow was to open, this guy right here basically in generalization it says this guy is a generalization of the base class. So intolerance condition describes all allergies, and these guys here are specializing different types of allergies. So this drug allergy observation has information about it that makes it unique to being a drug allergy, but it also inherits all the information from its base class. So this generalization approach is very effective for modeling. It's called inheritance. Inheritance is not supported in relational databases. It's an idea, of the modeling construct that just simple is not supported by oracle in relational databases. It's supported in object-oriented databases but we're not using those. So how do you take this model that has constructs that aren't even supporting the database and turn it into a database specific model? So here's an example of a transformation now into a platform specific model on the bottom, where each one of these things, drug allergy observation, drug food allergy observation, food allergy, etc., is added now as an attribute unto itself. So we have a food allergy observation, an unclassified allergy observation, the drug food allergy observation, etc. So we took the data that made these specializations unique and just collapsed them into their base class. That's one approach, that's one pattern that we use for taking a computationally independent model and transforming it into a model that's appropriate for relational databases.

An example of then taking a platform specific model, which is the top guy, and creating the physical implementation, in this case this one model can actually support two needs. It can create XML schema definition, I won't go into what that really means, I'll just say that that is similar to an HL7 message profile. It's a specification for what your payload should look like. So it's got a bunch of notation and syntax here that's based on this language that describes how the data should be structured and what its constraints are as it's passed from one service to another. It also can be implemented as Java objects, and here's an example of a Java object that is the implementation of this guy. So we can use this stuff to really create part of our code.

For geeks like me that's pretty cool. That's how it's done, but there's still some challenges that the VHIM is facing in our current environment. How do you model the future, because we're really trying to get to the future, without knowing the requirements? While simultaneously providing constraints to enhance data quality that we're not sure what the rigorous constraints are supposed to be. While simultaneously providing backwards compatibility to the data we have in place today, not only the more recent data, which is of relatively decent quality, but also the really old stuff. Twenty years ago, we've done some stats where it's appalling that 90% of the pharmacy records 20 years ago didn't have a pharmacist listed. That's the way the data was, it wasn't required back then. So things have evolved over time and so how do we create a model that can do all this stuff? And that's really the challenge of HealtheVet in an essence, is how do we handle this transition between where we're at and where we want to be. So one of the ways we're trying to tackle this is we've created some of our own gold standards. One of them is we try to get requirements from the reengineering teams, but those are slow coming. Lab reengineering, pharmacy reengineering, CPRS reengineering has been put on hold for the time being, so getting these requirements are slow, we can't rely on them as our gold standard but they're one source. We try to do subject matter expert reviews and get input from you all into these models, and we really need more of that to make sure that these models meet the needs that you guys can communicate to us. And then finally we need to be consistent with what's in place today. What's in place today is that we have a number of HL7 messages flying across the system and those have message profile specifications, so we better at least make sure our models are consistent with those rules and constraints. And there's also the VistA database, it's a legacy database, it's a data dictionary, we can have a whole other discussion about whether those data dictionaries are enforced, but they have data dictionaries nonetheless that tell you what the data should look like, so we can use that as a blueprint or one of gold standards if you will for how we create our models. It's what we have available to us today, it's not perfect.

So we've done six versions of the VHIM, we're actually working on the seventh now. And I say we, I'm an HDR representative, I'm not on the VHIM team, but because we are their first client we're in such close collaboration in the field like an extended team. So I say we in the larger sense. We did versions 3.0 through 3.4 as part of our prototype phase in the HDR, trying to predict the future. It turns out our glass ball wasn't so great. We got some SME input, but it wasn't sufficient, it wasn't reality. So in the last two versions, and in the seventh version we're working on now, we've really just focused on a couple of things that we can get our arms around. What does the HDR need to do? Let's worry about clinical data, let's not try and do financial and administrative and other things right yet. Let's focus on clinical. And what is it that the clinical data has available today? Well, if you attended any of the HDR presentations you would have seen that we've had an HDR IMS, which is an interim database, and we're working on HDR II which is the future database. HDR IMS database relies on HL7 messages, and those messages have a profile that describes what the rules for that data are. So we're going to base our model on that for now. That's what we're going to need to do to be consistent with the data we have available.

Here's a snapshot of a tool built by Pete Rontey, he's a VA employee, that's now been adopted by the HL7 committee for describing message profiles. This is a tool that actually is quite powerful that allows you to in a graphical form describe what a message should look like, a HL7 message should look like. And it follows HL7's messaging principles. There are certain rules that the HL7 committee itself puts around what its message can look like. And here you can define certain things like whether within the VA we're going to make something required or optional, or make sure you have three of them or whatever. We're going to define a data type, we might define other constraints like what is the max length, if it's a character field how many characters will we accept, etc.

So here's a nice tool that we have in place today that we can use. And to ensure that we're consistent with the output of that tool, we've done a lot of mapping. So this is all the columns leading up to the column M are nuggets of information that we pull out of the HL7 message profile, the outcome of that tool I just showed you, describes what the message data element is, what sequence, where it's found within the message, data types, its usage, is it required, etc., those types of things. And we said this guy is equivalent in the VHIM world to, the one that's color-coded here, the outpatient medication promise class, that's a class within the pharmacy package, pharmacy request, that's the name of a relationship that it has to the pharmacy request class, which has an attribute called generic request, which is a complex type that's defined as having a place or ID with a root attribute. Did I lose you? It gets confusing. Nonetheless, the point here is that we're mapping the VHIM back to the HL7, we're using that as our gold standard right now.

Given that approach we still have the challenge of the future, how do we evolve? HDR historical is a snapshot of VistA, and whatever is in VistA we've got in HDR historical. HDR IMS and the beginnings of HDR II will be whatever is available in the HL7 messages that are passed around, which in some cases is not exactly the VistA data in its raw form, it's been processed and manipulated, maybe cleaned up a little bit before it's put into an HL7 message. So we create different modeling constructs to allow us to have the flexibility for backwards compatibility. So vital signs observation event is defined as having all these things. But the fact that all of them have a little green dot means that they're all optional, because in VistA we don't necessarily have all these things, we have to make them optional for now. In the future maybe they'll be required. We also need to be able to extend this base class notion here and allow for backwards compatibility to what's in VistA today. In VistA today all you have is value and units. Here's an example. Value and units. In this example there were no units, but there might have been. So we've got to have a data structure that allows us to handle that kind of data. In IMS we've got the same thing, we've got values and units. Here's an example where units were actually populated. We've got to be able to handle all that. So in this case it's not there and in this case it's there, thus units gets the green dot. Units must be optional, we have to be able to support that.

In the future we hope to be able to add a lot more rigor. We hope to define blood pressure as being 1 or more diastolic values and 1 systolic value with defined data types for their actual observed values, and define coded entries for what units they can use. Units is a coded element, there's a finite list of different types of units of measure, and we can standardize that and so you can pick from a list rather than type in something freehand and worry about typos and things like that. So this is what we hope to get to, where it's very well structured, you have a diastolic value with units and the units has a code because it's a coded element, and that corresponds to a VA unique identifier that maps to our enterprise terminology and the world is all grand. We'll create another specialization of this base class that provides the first diastolic pressure, the second diastolic pressure if there is one, and the systolic pressure. So we start to get more and more structured as the data allows us to, and this is what we hope to see when reengineering comes around is they start to define their data more stringently, and that the business community enforces and validates those are the right constraints, and helps us evolve to that stage. And the models and the HDR and the data will all evolve in time.

I think some of this should hopefully be obvious by this point. What is VHIM's role in data quality? It's the place where constraints are defined. And data quality in my definition is it's the measure of how well you've enforced your data quality constraints against the data itself. So this is where you get to define what's optional, what's required, what the data type is, what belongs, what's out, how it relates to other things, etc. The types of constraints again, data types, semantics or the relationships, cardinalities, things that are required or not, permissible values, again for coded elements you might have a list of all known allergens, strawberry may be an example of one such allergy, and if we get a value for strawberry and it's supposed to be a type allergen, we should be able to verify and validate that in fact that is a permissible value for that value set. And then we can use a thing called regular expressions, another IT construct that allows us to define even more rigorous constraints for formats and ranges, etc.

A couple more HealtheVet principles and then I'm going to turn it over to Matt to talk more about how the HDR uses the VHIM and what the nature of that dependency is. So the HealtheVet will use the service oriented architecture approach. We've been discussing that. Services are provided to create the capabilities to satisfy the business needs. So if the business needs an ordering system, we create an ordering service. If the business needs a way to handle where organizations and where things are located, we'll create a service to do that. Data services are a particular type of service, and they're in the business of providing access to data. They're not labs, they're not pharmacy, they're just raw data management. The HDR has its service called the clinical data service that Matt will get into. It is our service implementation that's a data service, that meets our business need of managing data. We're not in the business of executing labs and rules. We're in the business of providing and persisting labs data to whoever needs it. These services do a lot of things, particularly our service, it abstracts a lot of details from the consumer, which is a good thing. The consumer doesn't need to know where the data is located, it could be in VistA at one point in time, it could be in HDR historical, it could be in HDR II, it could be wherever and it doesn't really matter from the consumer's perspective. The data service hides all those details and gives you a layer of abstraction, so data can migrate behind the scenes and the end user never needs to know the difference. It doesn't really need to reveal any details about how the data is persisted or how it's retrieved, or how it's transformed or processed or validated, all that stuff is encapsulated inside this nice little package called a service.

Okay, turn it over to you Matt.

Good morning. I also work on the HDR team, I've been on it for six years. My responsibility has been working on the data content requirements with the subject matter experts, getting all of those gathered and documented. So when we're talking about CDS and the VHIM, it's a little technical for me, so I'll be relying on my notes quite a bit. As Bo already talked about, the data will be a common asset in the VA. It's no longer owned by a specific facility, it's no longer owned by a specific package. It's going to be owned by the entire VA. HDR is going to be the common repository for all of that data, and as Bo mentioned it's going to be clinical data, it's going to be patient-centric data. Those two are pretty easy to understand. And then there's the concept of the viewable data, which again Bo talked about a bit, but some examples of viewable would be pharmacy data that all users in CPRS can see. It's shared outside of the package and viewed by other people. Non-viewable or shareable would be pharmacy data needed to process a prescription that's only looked at and processed by pharmacy staff. Nobody else needs to see that, it won't be shared. I'll talk a little bit about the different components of HDR. HDR IMS, HDR II, and HDR historical. Historical is intended to extract VistA data from the past as is. It's not standardized, it's not computable, it's needed for the legal health record, it's needed for care providers if they need to go back and look at historical data, especially important historical data like allergies. You need to know what all of those allergies are. It's also intended to meet the requirements of the legal health record. All of that data is required as far back as it goes, depending on the domain, and it has retention requirements. Most clinical data the VA is required to keep for 75 years, so the HDR will be able to meet that need to keep that data for 75 years, and in the process once it's proven that we can do that the local sites can start purging that data and destroying their paper records. IMS stands for the Interim Messaging Solution, and that's using HL7 messages. That's a solution that was needed immediately for some certain HDR clients so they would have that data available now across multiple sites. Some examples are RDI, VistAWeb, CHDR. CHDR is the Combined Clinical and Health Data Repository project, where we're working with the DoD to share information on patients that can be seen at both facilities. So that entire record is available. There may be some pieces in the DoD system that the VA doesn't have, that needs to be known, and vice versa. Then HDR is the future. It's going to be the reengineered data, it's going to be standardized, it's going to be computable, it's going to be clean, it's going to be high quality. The HDR data is going to be used for a number of different purposes, the primary one of course being patient treatment. There are a multitude of secondary uses that are very important to all of you and all of the different people that need clinical data. It can be used for research, it can be used for performance improvement and performance monitoring. It can be used for the patient's personal health record. There's just tons and tons of different uses of that data, and the great thing about it is the data only has to be entered once but can be used in many different ways. That's a key, key benefit of the HDR.

This is where I get a little nervous, because CDS or Clinical Data Services, this is Bo's baby. So if I mess any of this up, Bo is going to definitely jump in and help me out. CDS is the service that manages the data, how it gets moved from the data stores to the user and vice versa. When it moves the data from where it's being entered into the data store, that's what is commonly called write data. It's writing it to the data store. And then the reverse of that is getting the data from storage and returning it to the user for viewing. That is read data. A real easy example of that is when you're in CPRS and you're a user and you want to look up a new patient. So you click on the new patient and after a few seconds all of the data on the cover sheet appears and it's fully populated. That gap between selecting that new patient and when all of that data available is in the cover sheet, that's where CDS will be doing its work. CDS allows the user interfaces not to directly communicate with the data stores, and that again provides key benefits. When you've got multiple applications accessing the different data stores, there's just a lot of traffic. There's potential for inconsistencies, missing data, things being out of sync. So CDS, having that middle layer to perform that moving data back and forth is really useful. The work that CDS does is what's called all under the hood, it's transparent to the user, it's invisible to them. And that's fine because they don't need to know where that data is coming from or how it's getting to them. They just want the data that they need for treating the patient or whatever types of things they need to do with that data. Besides accessing the HDR databases for data, CDS will also be able to access VistA for that data that users need before it can be entered into the HDR. So there may be some unique business cases where users need that data and they need it now, and CDS is capable of going to a non-HDR source to get that. Bo talked a little bit about VHIM compliance and the big thing there is the data quality. What constraints and business logic need to be built in so that the permissible level of quality is provided to the data user and is in the HDR. The tighter the constraints are, the higher the quality will be, but there may be some important data that doesn't pass those validation checks that people need that won't get in, and you have the reverse with looser constraints. The looser they are, you have a much more complete record, but the potential for the quality being not as good is there as well. One of the things that's being discussed now is starting out at those looser levels and allowing as much information in, and then as packages are reengineered and error resolution and data cleansing processes are implemented, the constraints can be tightened up because the data is better quality now and the more you do that, the better it's going to be.

This slide talks about how the CDS supports payloads or data outputs for multiple VHIM versions. A VHIM version includes all required content for a domain at a given point in time. And I'll give some examples here of different VHIM versions for outpatient pharmacy. Version A for outpatient pharmacy could be it includes all current approved data elements for the outpatient pharmacy domain. Everything that's needed for an original prescription, refills, partial refills. Version B will include what's in Version A, plus any changes that are approved over time. We've got a request in now where the business users, the SMEs that we worked with on outpatient pharmacy, there were a number of new fields that they wanted added to the HDR. So that's going to be a new version. You're going to have what was there before plus these changes. An example of Version C would be everything that's in Version B, but will add the non-VA meds data. Non-VA meds is a component of the outpatient pharmacy domain, but it hasn't been implemented yet. So once that's been implemented that data content will be added. And then finally Version D is when we get to pharmacy reengineering, and we get that standardized, computable, reengineered data. So those are some examples of what different VHIM versions can be. What may happen is a user may request outpatient pharmacy data over a period of several years, and that data may live in one or more of these different versions. And what CDS can do is it goes out to the data stores and looks into the different data stores and pulls back exactly what's needed for that period of time. Bo wanted me to stress that VHIM versions will be released on a regulated schedule. Normal releases will be done on about a six month cycle. There's also the potential for more urgent releases, maybe in a case where there's a patient safety issue and we need to get that VHIM version out that includes that data, and so there would be a process for handling urgent releases as well.

This slide talks about the internal domain model and how it will support multiple data sources, data aggregation, and processing logic. As I had mentioned, the data that's being requested by the user can be in one or more of the different data stores. It could be in VistA, historical, IMS or II. What the CDS internal domain model will do is if there is data in more than one data store it will take that data and merge it. It will also resolve duplicate data that may exist in the various databases, and it may translate or transform coded data into a human readable form. Bo had an example before of a VA unique identifier, a VUID, that's a numeric number for a concept, but it's just a number and unless you're a coding geek like me with a past history of medical coding, most people don't memorize those codes. So it will be able to take that VUID and transform it into what concept it represents. Another good example is something will be in a SNOMED code format, a code of 90210, nobody really knows what that code means but it can translate that into what that problem is or that diagnosis. For example, a kidney stone. Something that's human readable and understandable. And what this allows is a common homogenized view of the data for the user. Again it may come from several different data sources, could look different in each of those, but when it's returned to the user it's in the format that they need and they can use. We've already talked about again how the nature of the data in the different data stores can be different also, so I'm not going to go into that too much. I did want to talk about historical a little bit and legacy data as is. We currently have 31 different clinical domains, and for all of those domains they may not all necessarily have their legacy data included in historical, it's going to be a unique situation. One example we have is nursing data for intake output and nurse care plan. There's two VistA files where in the past that data was populated, and then when TIU came along the nurses started documenting that data in TIU. We had worked with a nursing users group to get their direction on if they wanted that VistA data extracted into historical and they said it wouldn't really be that important or that useful. So there's a case where there's a domain that may not have data in HDR historical.

Now we get into the VHIM domain models. Domains, as you probably understand, are categories of similar data. Outpatient pharmacy is a domain that includes prescription information. It includes non-VA meds information on over the counter meds or herbal medicines. Another good example is clinical procedures. Clinical procedures will include a number of different categories, a lot of cardiology type tests and procedures like EKG data, cardiac catheterization data, so that's a domain that groups a number of similar types of data into one common grouping. The domain model will include all the possible required data elements for that domain. What has been specified by the users, what's been approved, and what's currently in there. It's the superset of the data for that domain. What the VHIM payload versions allow are the use of templates and templates in this case are different than your TIU or your CPRS templates. Templates in this case are allowable subsets of the data for that domain that meet certain use cases. So one example of a template, template 1 for allergies could be all of the allergy and adverse reaction information for a patient. What was the reaction, what was the drug that caused it, was it an observed or historical? All of that data. Template 2 may only return what the allergy assessment was. Patient is asked if they have any known allergies and they answer yes or no. Very basic use case. And then you have a different use case for the adverse reaction reporting data that has to go to the FDA and to the facility's PNT committees. That's really quite different. It has the reaction data and it also answers a number of questions like did this patient die from this reaction. Those type of things that it's important to report to the FDA so they're aware of any problems with certain medications. Templates can also cross over domains, and the one good example would be the CPRS cover sheet. CPRS cover sheet has to provide all allergies, vitals, problems, appointments, etc., for a patient. So that's an example where it can cross domains in a useful purpose for that.

I just want to try and relate some of the examples that Matt gave back to the principles I discussed earlier. These last two slides spoke to two of CDS' core requirements. One is to support multiple data stores, another one is to support multiple VHIM versions. The reason behind VHIM versions is we can't expect that the new VHIM version that's released every six months, that every application in the future using VHIM version because it's a standard requirement, will be able to migrate to that VHIM version lockstep. There needs to be a window of time where they're allowed to migrate and different projects will migrate on their own different schedules. To support that type of environment it's been a requirement of CDS to support multiple VHIM versions to allow clients to understand Version A to talk to us as well as clients understand Version B, etc. The principle I spoke to about domain models, in this case they're application context domain models as opposed to information domain models, we use them in multiple ways to address those two requirements. To support multiple data stores we create an internal domain model, which is a bunch of objectification of data that meets our specific business purpose, our being the clinical data service. Allows us as Matt pointed out to aggregate records from multiple sources and handle duplicates and do other types of business processing against that. We needed a place where we had objectified data so we could apply our business logic, and that's the internal domain model. But we also had the requirement to support multiple VHIM versions and our internal domain model is not based on any one VHIM version, it's based on what we need it to be, so how do we take that information and make it so you can support multiple VHIM versions, and that's where on this slide the principle of domain models is also applied in that we create another set of domain models, one for each VHIM version supported. So if we support three VHIM versions then we have three VHIM specific domain models, and those VHIM specific domain models can support any requests against that VHIM version. Those are the templates that Matt described. So we use the concept of domain models, which again relies on objectification of data and then depends on an enterprise standard for what the data looks like. We use that pattern very extensively throughout our architecture.

Thanks, Bo. Now we're talking about why does the VHIM really matter to the HDR. We're bringing it all together. This is kind of a textual description of the five different models and how this stuff works.

The next slide has the diagram that goes with it, so we're going to be flipping back and forth here. I think this picture really helps make this more understandable. And this is still a little confusing to me, especially when we get into some of these things being created manually using the VHIM as a blueprint, and then created directly from the VHIM auto generation, so this is probably another point where Bo may have to jump in. But we'll give it a shot.

Okay, we talked about the five different data models that are listed here. HDR II national, HDR historical, the CDS internal domain model, the CDS VHIM version specific domain models, and the VHIM version specific payloads. First we'll talk about historical, and we've already went over this quite a bit. That's legacy data that's extracted as is, it doesn't need to be standardized. Data quality constraints won't be used against it. It's going to just be what's there as is. Therefore it doesn't use the VHIM,

doesn't need to use the VHIM.

The VHIM version specific domain models and the VHIM version specific payloads are auto generated by the MDA, which is the model driven architecture. And then the HDR II national and the CDS internal domain model, these are created manually using the VHIM as the blueprint, and a key point here is that allows customization.

So we'll go back to the diagram and so the gray has to do with HDR historical, there's no correlation to the VHIM. The things in blue, HDR II national and the CDS internal domain model were the things that were created manually using the VHIM as the blueprint, they're able to customize that. Then the VHIM version domain models and the VHIM version payloads were created directly from the VHIM. Bo, if you could add some maybe common examples of how these things are different I think that would be helpful.

To support multiple VHIM versions and to be able to support requests for our client that only understands a particular version, we needed to have that version represented inside of our architecture so we understood the language that the client spoke. So where possible we aligned ourself with the VHIM and we use these really cool tools to auto generate parts of our architecture using model driven architecture. So that's the yellow, I think that's hopefully pretty well understood. But the other parts, the CDS internal domain model and the HDR II national database, our approach there was we need to have ways to persist data at the database layer, and ways to manipulate data at the CDS layer that is based on how we need to optimize things and what our business rules are, and really is the under the hood stuff that the client never needs to see. So the VHIM tells us a lot of stuff. It tells us what data elements are within our scope and how they're related and how they're defined, etc. But we can't base our internal stuff based on a VHIM version because we have the requirement to support multiple VHIM versions. So if we were to do that, if the two blue boxes were in a state of yellow, we would have one HDR II database for every VHIM version, and that's a management nightmare. We would have one CDS internal domain model for every VHIM version, which means that we have to recreate all of our business rules for every version that we support within the language of that version, and that's a management nightmare. So our strategy was instead to create extractions of multiple VHIM versions, find the commonalities and maintain those, but things where they vary, figure out some way to abstract that out and create a construct that we can process that doesn't care about those VHIM version differences. So that's where we said we use it as a blueprint. We look at the VHIM versions we're supporting, we put them up on a wall and we say okay, this is our guide, how do we create our own internal models that can generalize these three different versions and meet our own business needs? So that's what the blue boxes are getting after.

Thanks, Bo. Okay here we're talking about HDR and CDS national. HDR national is going to be the version of the repository that has all data on all patients. It's going to be that legal health record copy, it's going to allow the retention requirements to be met. It's not meant to be the transactional system. Besides the one repository of course there will be probably one or more versions that are available for back-up purposes, for failovers, so there's not just one copy of that. There are a number of clients that will be using the national data. Nationally deployed systems, one is My HealtheVet, one is CHDR, and there are other potential ones in the future, especially other federal agencies. The CDC would like to be able to use the data in the HDR for monitoring disease outbreaks, getting very timely data on vital signs and lab results that may point out that in a certain area there's been a disease outbreak like Avian flu that needs to be handled right away. And I know Clyde on HDR historical has been talking to them about that need for that data. What was it, they wanted it every 5 minutes or every 15 minutes? Every 15 minutes. And then there's the FDA which we've talked about, they're going to want the information on adverse reactions. We'll need to communicate with them on possible med recalls or device recalls. The ultimate goal is to be able to share information with the veterans non-VA providers, and as Bo talked about there's a lot of patients out there that are being seen by both VA providers and non-VA providers, and there's almost always inconsistencies between the two systems on what data they have for each of them. In one system the patient's got five allergies, in the other one they haven't reported any of those. And that's a major problem. So this will allow us in the future to be able to share that data wherever the patient is being seen, and down the road it's going to be from the cradle to the grave, their entire medical history will be in the EHR.

Okay, now we talk about HDR local and CDS local, and how they're different from the national systems. The HDR local is intended for the local facilities to have access to just the data on their own unique patients. Again, the national system is going to have all clinical data on all patients. The local system is going to have all data on their unique patients, just the patients they've seen. An example on how HDR local and HDR national may work, I came up with a stupid example that some of you may appreciate. There's a 75 year old man in Buffalo who's going on the Bills backer bus to New England to go see the Bills/Patriots game. Two hours into the trip they're approaching Syracuse and he starts having chest pains and becomes short of breath and is sweating profusely. So they take him into the Syracuse VA. He's never been seen before at the Syracuse VA. They themselves don't have any data on that patient. But since they're part of the local system where Buffalo and Syracuse VAs' data will both be in that local instance, they have access to his Buffalo VA data. However, he hasn't been seen at the Buffalo VA in five years, so there's really no good current information. He was in Florida last winter snowbirding and had to go to the Tampa VA again for chest pain. But what they found out there was that he actually had gastro esophageal reflux. So being seen in Syracuse and having access only to the Buffalo data wouldn't be very useful for the providers. They would have to go through the whole work-up for myocardial infarction. But with the local being able to go out and getting the data from Florida and bringing it back, then right there they see that this might not be gastro esophageal reflux, it may prevent them from ordering expensive tests, ordering expensive medications, and catching it right away there. So that's a real big advantage of the two different systems. And come to find out the guy did have GERD because he'd had 20 chicken wings for breakfast on the way to the game. So that's the explanation for that. Local has the same functionality as national, but again it's that system that the transactions can be based off of, and it's built for that, it's optimized for that. It's going to be faster because the sites are closer to the data stores, it's going to be more efficient, there's going to be less users on those systems so that's how it's optimized.

How the VHIM impacts you. The VHIM is going to be the gold standard, it's going to have all of the HDR content requirements. It's going to have all the structural requirements. It's going to have those data quality constraints from CDS. How the VHIM starts out is it takes the content requirements that my team has worked on, and that includes field names, descriptions, optionality, example values, and then it adds in the HL7 specifics, and then it adds in some of the modeling specifics, and then the data standardization specifics. All of that data for the whole system to be able to deal with processing that data, it's all going to be there, that's why it's the gold standard. These things are only as good as what's built into them. The payload is only good if all of the requirements have been identified and built in. The VHIM must meet all approved business needs, it won't be static, it's going to be constantly changing to meet business requirements and changes to requirements, and all of that stuff.

The HDR impacts you and we have a number of reasons why. If the HDR doesn't include all of the data you need for your various business needs, it's not complete. If the data models don't have all of the requirements specified and built in, it's not going to meet your needs. If the data quality constraints aren't set up properly, it's not going to meet your data needs. These are all potential serious issues if these things aren't correct. Finally, how can you help? The biggest thing we need from you is your subject matter expertise.

We've reviewed all of the domains for content requirements, we've done initial VHIM reviews with subject matter experts to get those requirements, but we didn't have all SMEs from all areas involved and that's a case where we're going to need more of the non-traditional type users. The researchers or the quality improvement and performance measure people. We need them to get involved and to specify their requirements. We've hit the main ones for patient care, but now we need to get those people in so their needs can be met. We also need support for the HDR to get it to continue to move forward. We need support for funding, we need enough money to build this thing and to build it quickly. Right now it's not moving too quickly and we need to get it out there quicker so everybody can start using it. We need to embrace the VHIM as the gold standard of having all of the data needed in order for HDR and the VHIM and CDS all to work appropriately to meet your needs. Again we need you to participate in the SME reviews, so we get all of those requirements specified and documented. One of the big things is we need input on the error resolution process. This is a big deal right now where that needs to happen and we need a lot of input here. It's kind of the who, what, why and where of error resolution. What errors need to be resolved, where are they going to be resolved, before they go into the HDR, after the HDR, both places? When are they going to be resolved? Same thing, before, after, both. Who's going to be responsible for that? Is data quality going to take on that role? And who's going to identify the errors, are they going to be the users? Is there a process to communicate those to data quality or whoever else is responsible for cleaning up that data? Because in the HDR II world that data has got to be clean before it goes into the HDR or it won't get accepted.
1
PAGE
1

